
University of California

Los Angeles

Simplified Semantics and Debugging of
Concurrent Programs via Targeted Race

Detection

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Daniel Luke Marino

2011



c© Copyright by

Daniel Luke Marino

2011



The dissertation of Daniel Luke Marino is approved.

Madanlal Musuvathi

Sorin Lerner

Rupak Majumdar

Jens Palsberg

Todd Millstein, Committee Chair

University of California, Los Angeles

2011

ii



This dissertation is dedicated to my family,

especially to my parents,

for their love and support.

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Data Races . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Happened-before Data Race Detection . . . . . . . . . . . . . . . 10

2.3 Relaxed Memory Models . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Interaction of Memory Models and Data Races . . . . . . . . . . . 14

3 LiteRace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 LiteRace Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Case for Sampling . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Events to Sample . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Sampler Granularity . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 Thread Local Adaptive Bursty Sampler . . . . . . . . . . . 22

3.2 LiteRace Implementation . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Instrumenting the Code . . . . . . . . . . . . . . . . . . . 24

3.2.2 Tracking Happened-before . . . . . . . . . . . . . . . . . . 26

3.2.3 Handling Dynamic Allocation . . . . . . . . . . . . . . . . 27

3.2.4 Analyzing the Logs . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Evaluated Samplers . . . . . . . . . . . . . . . . . . . . . . 31

iv



3.3.3 Effectiveness of Samplers Comparison . . . . . . . . . . . . 33

3.3.4 Analysis of Overhead . . . . . . . . . . . . . . . . . . . . . 36

3.4 LiteRace Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 DRFx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Introduction to the drfx Memory Model . . . . . . . . . . . . . . 41

4.1.1 A Compiler and Hardware Design for drfx . . . . . . . . . 42

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Overview of drfx . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Compiler Transformations in the Presence of Races . . . . 45

4.2.2 Writing Race-Free Programs is Hard . . . . . . . . . . . . 46

4.2.3 Detecting Data Races Is Expensive . . . . . . . . . . . . . 47

4.2.4 Detecting SC Violations is Enough . . . . . . . . . . . . . 49

4.2.5 Enforcing the drfx Model . . . . . . . . . . . . . . . . . . 50

4.2.6 From Region Conflicts to drfx . . . . . . . . . . . . . . . 51

4.2.7 The Compiler and the Hardware Contract . . . . . . . . . 52

4.3 Formal Description of drfx . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . 55

4.3.2 drfx-compliant Compilation . . . . . . . . . . . . . . . . . 57

4.3.3 drfx-compliant Execution . . . . . . . . . . . . . . . . . . 60

4.3.4 drfx Guarantees . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Compiler and Hardware Design . . . . . . . . . . . . . . . . . . . 67

4.4.1 Compiler Design . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Hardware Design and Implementation . . . . . . . . . . . 71

v



4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 An SC-preserving Compiler . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 An Optimizing SC-Preserving Compiler . . . . . . . . . . . 85

5.1.2 Providing End-to-End Programmer Guarantees . . . . . . 87

5.1.3 Speculative Optimization For SC-Preservation . . . . . . . 88

5.2 Compiler Optimizations as Memory Reorderings . . . . . . . . . . 90

5.2.1 SC-Preserving Transformations . . . . . . . . . . . . . . . 90

5.2.2 Ordering Relaxations . . . . . . . . . . . . . . . . . . . . . 91

5.3 An SC-Preserving Modification to LLVM . . . . . . . . . . . . . . 93

5.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Speculation for SC-Preservation . . . . . . . . . . . . . . . . . . . 99

5.4.1 ISA Extensions . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 Interference Check Algorithm . . . . . . . . . . . . . . . . 101

5.4.3 Implementation and Example . . . . . . . . . . . . . . . . 103

5.4.4 Correctness of the Algorithm . . . . . . . . . . . . . . . . 104

5.5 Hardware Support for Interference Checks . . . . . . . . . . . . . 105

5.5.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.2 Relation To In-Window Hardware Speculation . . . . . . . 107

vi



5.5.3 Conservative Interference Checks . . . . . . . . . . . . . . 108

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6.1 Compiler Configurations . . . . . . . . . . . . . . . . . . . 109

5.6.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.3 Experiments on Native Hardware . . . . . . . . . . . . . . 111

5.6.4 Experiments on Simulated Machines . . . . . . . . . . . . 112

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Data Race Detection . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Happened-before versus Lockset Dynamic Detection . . . . 118

6.1.2 Sampling Techniques for Dynamic Analysis . . . . . . . . . 119

6.2 Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Reducing the Cost of Sequential Consistency . . . . . . . . 120

6.2.2 Always-on Race Detection and Memory Model Exceptions 122

6.2.3 Transactional Memory Systems . . . . . . . . . . . . . . . 124

6.3 Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.1 Strengthening Memory Models by Restricting the Compiler 124

6.3.2 Optimistic Optimization via Hardware Speculation . . . . 125

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



List of Figures

1.1 A simple data race can cause a subtle bug. . . . . . . . . . . . . . 3

1.2 Transformation of a racy program can yield unexpected behavior . 4

2.1 Locking can be used to ensure data race freedom, enforce atomicity,

and maintain invariants. . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Using the happened-before relation for data race detection. . . . . 11

3.1 Failing to log a synchronization operation loses happened-before

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 LiteRace Instrumentation. . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Proportion of static data races found by various samplers. . . . . 31

3.4 Samplers’ detection rate for rare and frequent static data races. . 32

3.5 LiteRace slowdown over the uninstrumented application. . . . . . 38

4.1 Correct, data-race-free version of program from Figure 1.2 . . . . 46

4.2 An incorrect attempt at fixing the program from Figure 1.2. . . . 47

4.3 A program with a data race may or may not exhibit SC behavior

at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 The relationships among various properties of a program execution. 49

4.5 A transformation that introduces a read and a write. . . . . . . . 53

4.6 Architecture support for drfx . . . . . . . . . . . . . . . . . . . . 72

4.7 An Example Binary Compiled Using drfx Compiler. . . . . . . . 79

4.8 Performance of drfx . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



4.9 Effectiveness of Region Coalescing, and Out-Of-Order Region Ex-

ecution and Commit Optimizations. . . . . . . . . . . . . . . . . 82

5.1 Common subexpression elimination can violate SC. . . . . . . . . 86

5.2 Performing common subexpression elimination while guaranteeing

SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 SC-preserving transformations . . . . . . . . . . . . . . . . . . . . 90

5.4 Examples of eager-load optimizations . . . . . . . . . . . . . . . . 92

5.5 Optimizations which involve more than eager loads. . . . . . . . . 92

5.6 Example demonstrating optimizations allowed in an SC-preserving

compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Performance overhead incurred by various compiler configurations

on SPECint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Introducing interference checks when performing eager-loads. . . . 101

5.9 Applying GVN to a program. . . . . . . . . . . . . . . . . . . . . 115

5.10 Performance overhead incurred by the various compiler configura-

tions on PARSEC and SPLASH-2. . . . . . . . . . . . . . . . . . 116

5.11 Performance overhead of SC-preserving compiler on simulated TSO

hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



List of Tables

3.1 How LiteRace logs synchronization operations. . . . . . . . . . . . 26

3.2 Specifications for benchmarks used to evaluate LiteRace. . . . . . 30

3.3 Samplers evaluated for LiteRace. . . . . . . . . . . . . . . . . . . 30

3.4 Number of “static” data races found in benchmark executions. . . 35

3.5 Performance overhead of LiteRace compared to full detection and

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 SC-Violating LLVM Optimizations . . . . . . . . . . . . . . . . . 94

5.2 Baseline IPC for simulated DRF0 hardware running binaries from

the stock LLVM compiler. . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Simulated processor configuration for evaluation of SC-preserving

compiler with interference checks. . . . . . . . . . . . . . . . . . . 113

x



Vita

1975 Born, La Mesa, California

1999 B.A., Computer Science & Mathematics

University of California, Berkeley

Berkeley, California

1999–2003 Software Engineer

Eagle Research, Inc.

San Francisco, California

2003–2004 Director of Applications Development

YMCA of San Francisco

San Francisco, California

2006–2007 Graduate Student Instructor

Department of Computer Science

University of California, Los Angeles

2007 M.S., Computer Science

University of California, Los Angeles

Los Angeles, California

2008 Research Internship

Microsoft Research

Redmond, Washington

2009 Symantec Outstanding Graduate Student Research Award

Department of Computer Science

University of California, Los Angeles

xi



2010 Research Internship

IBM T.J. Watson Research Center

Hawthorne, New York

2010 Research Internship

Microsoft Research

Redmond, Washington

2007–2011 Graduate Student Researcher

Department of Computer Science

University of California, Los Angeles

Publications

J. Fischer, D. Marino, R. Majumdar, and T. Millstein. “Fine-Grained Access

Control with Object Sensitive Roles.” In Proceedings of the 23rd European Con-

ference on Object-Oriented Programming, ECOOP 2009, Genoa, Italy, pp. 173-

194. Springer, 2009.

D. Marino and T. Millstein. “A Generic Type-and-Effect System.” In Proceed-

ings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in

Languages Design and Implementation, Savannah, Georgia, pp. 39-50. ACM,

2009.

D. Marino, M. Musuvathi, and S. Narayanasamy. “LiteRace: Effective Sam-

pling for Lightweight Data Race Detection.” In Proceedings of the 2009 ACM

xii



SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2009, Dublin, Ireland, pp. 134-143. ACM, 2009.

D. Marino, A. Singh, T.Millstein, M. Musuvathi, and S. Narayanasamy. “DRFx:

A Simple and Efficient Memory Model for Concurrent Programming Languages.”

In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, pp.

351-362. ACM, 2010.

D. Marino, A. Singh, T.Millstein, M. Musuvathi, and S. Narayanasamy. “A Case

for an SC-Preserving Compiler.” In Proceedings of the 2011 ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2011,

San Jose, California, pp. 199-210. ACM, 2011.

S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and J. No-

ble. “JavaCOP: Declarative Pluggable Types for Java.” ACM Transactions on

Programming Languages and Systems 32(2), pp. 1-37. ACM, 2010.

A. Singh, D. Marino, S. Narayanasamy, T.Millstein, and M. Musuvathi. “Efficient

Processor Support for DRFx, a Memory Model with Exceptions.” In Proceedings

of the 16th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2011, Newport Beach, California,

pp. 53-66. ACM, 2011.

xiii



Abstract of the Dissertation

Simplified Semantics and Debugging of
Concurrent Programs via Targeted Race

Detection

by

Daniel Luke Marino
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2011

Professor Todd Millstein, Chair

The shared memory paradigm is the de facto standard for programming parallel

server and desktop applications. In this paradigm, a program is made up of a

collection of threads that cooperate to perform a task and communicate by ac-

cessing a shared memory space. In order to exhibit predictable behavior, threads

sharing memory must be carefully synchronized in order to avoid leaving shared

memory in an inconsistent state. A data race is a common flaw in shared mem-

ory concurrent programs which occurs when multiple threads access the same

memory location without synchronization.

Data races lead to insidious bugs that are difficult to find and fix. Modern

optimizing compilers and hardware further complicate the situation by exposing

memory models that do not guarantee sequentially consistent semantics. In such

a setting, a data race can lead to behavior that is unintuitive and difficult to

explain.

Precisely detecting data races at runtime could alleviate these problems. Un-

fortunately, precise data race detection is prohibitively expensive. This disserta-
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tion presents a variety of strategies that can be used to detect only certain races

at runtime with very low overhead while still providing simple, strong guarantees

to programmers of shared memory, concurrent systems.
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CHAPTER 1

Introduction

It has been widely noted that concurrent programming is becoming increasingly

important and prevalent [Sut05]. In the “free lunch” days of the past few decades,

applications have enjoyed steady performance improvements due to the frequency

scaling enabled by Moore’s Law. This is no longer the case, as Moore’s Law

is instead being realized by cramming more processing cores onto a chip. As

a result, applications need to exploit opportunities for parallelism in order to

improve performance and add features.

The shared memory paradigm is the de facto standard for programming par-

allel server and desktop applications. In this paradigm, a program is made up of

a collection of threads that cooperate to perform a task and communicate by ac-

cessing a shared memory space. In order to exhibit predictable behavior, threads

sharing memory must be carefully synchronized in order to avoid leaving shared

memory in an inconsistent state. The bête noire of shared memory concurrent

programming is the data race which occurs when multiple threads access the

same memory location without synchronization.

Data races often lead to insidious bugs that are difficult to isolate and fix.

Even well-tested, critical code can have lurking bugs caused by data races. If one

doubts the potential severity of data races, consider that races in the software

for a radiation therapy machine have resulted in death and injury and that the

massive 2003 blackout in the Northeastern US was in part caused by a data race

1



[Lev93, Pou].

Bugs that result from data races are difficult to find and fix for many reasons.

To begin with, reasoning about a parallel program is inherently more compli-

cated than reasoning about a sequential program due to the need to consider

multiple flows of control. Furthermore, bugs that occur as a result of improper

synchronization are often intermittent, occurring only on some interleavings of

the threads. Finally, the observed program failure may occur while executing

code far away from the race that caused the bug. Consider the example in Fig-

ure 1.1. It shows a program that contains a data race due to unsynchronized

accesses to the shared variable nonZeroInt, which the programmer intends never

to contain the value zero. Threads 1 and 2 both check to ensure that the variable

contains a value greater than one before decrementing it. However, because no

synchronization mechanism is used to ensure that the decrement occurs atomi-

cally with the check, the interleaving suggested in Figure 1.1 can occur, resulting

in a zero being stored into nonZeroInt. Thread 3, whose code is not buggy, can

then cause a divide-by-zero exception due to the data race between Threads 1 and

2. This simple example demonstrates that data races can cause subtle bugs. As

programs become more complicated, the bugs caused by data races can become

far more difficult to understand.

Optimizing compilers and hardware further complicate the situation by trans-

forming programs that contain data races in ways that produce unintuitive be-

havior. In order to give a well-defined semantics to a concurrent program, a

programming language or hardware platform must specify exactly which writes

to a variable or memory location may be visible to a read that executes on a

different thread or processor. This specification is known as a memory model.

In describing the example above, we implicitly assumed that a multithreaded

2



int nonZeroInt = 2;

//Thread 1

if (nonZeroInt > 1)

nonZeroInt--;

//Thread 2

if (nonZeroInt > 1)

nonZeroInt--;

//Thread 3 can perform

//division by zero!

int tmp = 10/nonZeroInt;

Figure 1.1: A simple data race can cause a subtle bug.

program behaves as if the instructions from all threads are executed one at a

time in some interleaved order, with the instructions from each individual thread

executing in the order specified by the program. We further assumed that a

read of a variable sees the value written by the previous write to that variable

in this interleaving. This corresponds to the memory model known as sequential

consistency [Lam79], or SC, which is natural for programmers to assume.

In fact, current parallel programming languages, such as Java and C++, and

modern multicore architectures provide memory models that are weaker than SC.

They expose these relaxed models in order to permit common performance opti-

mizations such as common subexpression elimination in the compiler and write

buffers in the hardware. While care is taken to ensure that these optimizations

are not visible to programs that are free of data races, racy programs can ex-

hibit surprising behavior under relaxed memory models. Consider the example

in Figure 1.2(a) which has data races on init and on x. If these are the only

two threads in the program, it seems reasonable to believe that the dereference

of x in line D will never cause a segmentation fault, since on all interleavings of

these threads, D executes only if x has been initialized to a non-null value. In

fact, under the memory models provided by current programming languages and

3



X* x = null;

bool init = false;

// Thread t // Thread u

A: x = new X(); C: if(init)

B: init = true; D: x->f++;

X* x = null;

bool init = false;

// Thread t // Thread u

B: init = true;

C: if(init)

D: x->f++;

A: x = new X();

(a) (b)

Figure 1.2: Transformation of a racy program can yield unexpected behavior. (a) Original
program. (b) Transformed program.

architectures, instructions A and B may be reordered as shown in Figure 1.2(b).

Thus x could potentially be null when it is dereferenced. Besides complicating

the debugging process, the interaction between unintentional data races and op-

timizations can result in serious safety violations, like causing program control

to jump and begin executing code at an arbitrary location in memory [BA08].

Languages generally do provide intuitive, SC semantics when a program is free

of data races [MPA05, BA08].

Because of their serious implications, much effort has been put into research

on preventing or detecting data races. While it would be desirable to prevent

all data races statically, there are many practical obstacles. Most static tech-

niques are limited only to lock-based synchronization and either greatly restrict

programming style or have trouble scaling to large programs. In order to be ap-

plicable to existing programs which use a variety of synchronization primitives,

the detection schemes presented in this dissertation are dynamic. Dynamic tech-

niques are able to accurately detect races in programs that use the full range of

4



synchronization paradigms and can be applied equally well to large and small

programs. Unfortunately, they can have a crippling effect on performance, slow-

ing programs by 8× or more when precise detection is done in software [FF09].

Schemes for hardware-assisted dynamic data race detection lower this overhead,

but require complex rollback and re-execution mechanisms in order to avoid false

positives [AHM91, MSQ09].

The research in this dissertation demonstrates that dynamic data race detec-

tion can be used to improve the state of the art in shared memory concurrent

programming without compromising performance and with reasonable complex-

ity. The key is to relax the requirement that the analysis precisely identify all

data races in the execution being monitored. Depending on the way in which

this requirement is relaxed, we achieve race detection that solves different prob-

lems in shared memory systems without the hefty performance or complexity

penalty normally associated with dynamic data race detection. This dissertation

describes three instantiations of this approach. The first, LiteRace, is a testing

and debugging tool. The second and third are both techniques to simplify the

memory models that we expose to programmers of shared memory concurrent

systems. All three support my thesis statement:

Although full dynamic data race detection is impractical, making care-

fully chosen sacrifices in detection precision enables low-overhead mech-

anisms that help programmers understand and debug concurrent pro-

grams.

Chapter 2 presents some background material useful in understanding all

three projects. A chapter on each project follows. Chapter 3 describes LiteRace

in which an intelligent sampling technique is used to greatly reduce the overhead

of traditional, precise race detection while still managing to identify 70% of the

5



data races exhibited during a program’s execution on average. Chapter 4 de-

scribes the drfx memory model which provides simple, strong guarantees to a

programmer while still allowing most common optimizations. It relies critically

on cooperation between the compiler and the hardware, on the freedom to ter-

minate a program containing a data race with an exception, and on a form of

hardware race detection which is made lightweight by ignoring data races whose

accesses occur sufficiently “far apart”. Despite sacrificing precision by missing

certain races, the detection nevertheless provides the basis for a strong guarantee

to the programmer: normally terminating programs exhibit SC behavior, while

exceptional programs have a data race. Chapter 5 presents research suggesting

that a compiler that preserves sequential consistency, even in the face of data

races, can still output code that performs well. It achieves this using lightweight,

conservative, static and dynamic techniques to establish data race freedom in

areas where optimizations are applied. As in drfx, the dynamic component is

implemented in hardware but is aided by the compiler. Recovery code inserted

by the compiler maintains SC in the event that a race is dynamically detected,

avoiding the need to throw an exception. Finally, Chapter 6 will describe some

related work and Chapter 7 concludes.
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CHAPTER 2

Background

This chapter provides details on data races, synchronization, data race detection,

and relaxed memory models. It provides useful context for understanding the

material in the following chapters.

2.1 Data Races

When multiple threads share memory state, they must take care to ensure that

invariants assumed about that state are not violated due to concurrent access

to memory by multiple threads. This is done by using special synchronization

operations to coordinate activities between threads. Common programming lan-

guage synchronization operations include mutual exclusion locks, semaphores,

and condition variables. These high-level synchronization operations are gener-

ally implemented using lower-level machine synchronization operations such as

compare-and-swap. We refer to all memory accesses used to implement synchro-

nization operations as atomic reads and writes.

We now present some informal definitions related to memory accesses, syn-

chronization, and data races. The definitions assume a program made up of

multiple threads that can only communicate through shared memory. They ac-

cess this memory using ordinary reads and writes and atomic reads and writes

which are used for the purposes of synchronization.

7



Definition 2.1 (Conflicting memory accesses). Two memory accesses conflict if

they access the same memory location, at least one writes to memory, and at

least one is not an atomic access (i.e., part of a synchronization operation).

Definition 2.2 (Racy execution (simultaneous)). A program execution exhibits

a data race if two threads execute conflicting memory accesses simultaneously.

We call such an execution racy.

Definition 2.3 (Racy program). We say that a program contains a data race if

there is some execution of the program that exhibits a data race. We call such a

program racy.

Definition 2.4 (Data-race-free program). A program that does not contain a

data race is data-race-free.

A programmer can ensure that a program is data-race-free by using synchro-

nization operations to ensure that no two threads can access the same memory

at the same time. For instance, the code in Figure 2.1 fixes the buggy code

from Figure 1.1 by using a mutex lock to ensure that the threads never access

nonZeroInt simultaneously. 1

Definition 2.2 is quite a strict definition for a racy execution in the sense

that only executions that actually perform accesses simultaneously are considered

to exhibit a data race. In fact, the most commonly used definition for a racy

execution is based on Lamport’s happened-before relation [Lam79] and takes

advantage of the fact that if synchronization operations are not used to enforce

ordering between conflicting accesses on different threads, then the potential for

1Note that inserting sufficient synchronization to ensure data race freedom does not guar-
antee correct maintenance of program invariants. We could make the program from Figure 1.1
data-race-free by surrounding each individual access to nonZeroInt with lock and unlock op-
erations. But, this synchronization would still lead to buggy behavior.
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int nonZeroInt = 2;

mutex m;

//Thread 1

m.lock();

if (nonZeroInt > 1)

nonZeroInt--;

m.unlock();

//Thread 2

m.lock();

if (nonZeroInt > 1)

nonZeroInt--;

m.unlock();

//Thread 3

m.lock();

int tmp = 10/nonZeroInt;

m.unlock();

Figure 2.1: Locking can be used to ensure data race freedom, enforce atomicity, and maintain
invariants.

simultaneous execution of these accesses exists. We will define the happened-

before relation as follows.

Definition 2.5 (Happened-before). The happened-before (<hb) relation is a

strict (irreflexive) partial order on the operations in a multi-threaded program

defined by the following inductive rules.

(HB1) a <hb b if a and b are operations from the same sequential thread of

execution and a is executed before b.

(HB2) a <hb b if a and b are synchronization operations on the same variable

from different threads such that the semantics of the synchronization

dictates that a preceded b in the execution.

(HB3) The relation is transitive, so if a <hb b and b <hb c, then a <hb c.

The informal statement of rule HB2 allows us to capture the wide range of

synchronization operations that are used, both high and low level. For instance,

in the case of mutual exclusion locks, we know that during a particular execution,

a particular release of a mutex happened-before the following acquire of the same
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mutex. As another example, we know that an atomic write happened-before an

atomic read that sees the value written by that write.

Using this definition of happened-before, we formulate an alternative defini-

tion of a racy execution.

Definition 2.6 (Racy execution (happened-before)). An execution exhibits a

data race if there are conflicting memory accesses a and b such that a ≮hb b and

b ≮hb a. We call such an execution racy.

Notice that Definition 2.3 for a racy program relies on the definition of a racy

execution, of which we now have two. In most settings, defining a racy program

using either Definition 2.2 or Definition 2.6 for a racy execution is equivalent

(e.g., [BA08]). But from a dynamic detection standpoint, it is most sensible and

effective to use the happened-before-based definition for two reasons:

1. More executions exhibit a race under Definition 2.6 than under Defini-

tion 2.2. Thus we are more likely to find an execution that reveals a data

race in a program. This improves the effectiveness of a dynamic detection

scheme.

2. Determining actual simultaneity in a complex system, such as a multicore

machine, is generally not feasible.

2.2 Happened-before Data Race Detection

In order to perform dynamic, happened-before-based data race detection, a tool

must keep track of the memory accesses and synchronization operations per-

formed by each thread during an execution. It must then construct the happened-

before relation for the execution, and for each pair of conflicting accesses, deter-

10



lock L

unlock L

write X

lock L

unlock L

write X

Thread 2

lock L

unlock L

Thread 1Time

lock L

unlock L

write X

data race on X!

lock L

unlock L

write X

lock L

unlock L

Thread 1 Thread 2

Figure 2.2: Examples of properly and improperly synchronized accesses to a memory location
X. Edges between nodes represent a happened-before relationship. There is no data race for the
example on the left, because there is a happened-before relationship (due to unlock and lock
operations) between the two writes to the location X. However, for the example on the right,
there is no happened-before relationship between the two writes. Thus, it has a data race.

mine whether or not one happened-before the other. A data race is found if there

are two conflicting accesses neither of which happened-before the other.

Figure 2.2 shows how the happened-before relation is used to find data races.

The edges between instructions indicate a happened-before relationship derived

using rule HB1 or HB2. Transitively, by HB3, if there is a path between any two

nodes, then there is a happened-before relationship between the two nodes. The

example on the left in Figure 2.2 shows two properly synchronized accesses to a

shared memory location. Since the two writes have a path between them, they do

not race with each other. In the example shown on the right in Figure 2.2, thread

2 accesses a shared memory location without proper synchronization. Because

there is no path between the two writes, the two writes are involved in a data

race.

There are two primary sources of overhead for a happened-before-based dy-

namic data race detector implemented in software. One, it needs to instrument

all the memory operations and all the synchronizations operations executed by

the application. This results in a high performance cost due to the increase in the

number of additional instructions executed at runtime. Two, it needs to main-
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tain metadata for each memory location accessed by the application. Most of

the happened-before-based algorithms [Lam78, Net93, AHM91, CMN91, CB01,

DS90, Cru91, Sch89, PK96, RB00, MC91] use vector clocks to keep track of log-

ical timestamps for all memory operations along with the addresses of the loca-

tions they accessed. Maintaining such metadata further slows down the program

execution due to increased memory cost. Even using optimizations suggested

in recent research, happened-before race detection performed in software slows

down the execution of a program by 8× or more on average [FF09]. Mean-

while, proposals for hardware assisted happened-before-based data race detec-

tion [AHM91, MSQ09] suffer from both incompleteness and complexity. The

tracking of metadata in fixed size hardware structures, such as caches, limits

the window in which races are detected. Furthermore, the proposed mechanisms

either detect races at the cache line granularity or by using signature based sum-

maries, both of which lead to false positives. Thus, in order to make the detection

precise, they rely on complex checkpointing schemes in order to roll back and re-

execute when a potential race is encountered.

The detection schemes used in the systems presented in this dissertation avoid

the cost and complexity inherent to precise happened-before-based data race

detection by targeting the detection at particular goals which can be achieved

while sacrificing some precision. In the case of LiteRace, described in the next

chapter, the goal is finding bugs in mature applications. Chapters 4 and 5 detail

approaches where the goal is a simplified memory model.

2.3 Relaxed Memory Models

A memory consistency model (or simply memory model) forms the foundation of

shared-memory multi-threaded programming. It defines the set of possible orders
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in which memory operations can execute and become visible to other threads,

and thereby the possible values a read can return. It provides a contract that

programmers can assume and that compilers and hardware must obey.2 While

it is desirable to provide programmers with a simple and strong guarantee about

the behavior of their programs, doing so can reduce the flexibility of compilers

and hardware to perform common optimizations, potentially harming program

performance.

A case in point is sequential consistency (SC) [Lam79], which requires all

memory operations in an execution of a program to appear to have executed

in a global sequential order consistent with the per-thread program order. This

memory model is arguably the most simple for programmers, since it matches

the intuition of a concurrent program’s behavior as a set of possible thread inter-

leavings where each read from a location sees the value from the previous write

to that location in the interleaving. However, many program transformations

that are sequentially valid (i.e., correct when considered on an individual thread

in isolation) can potentially violate SC in the presence of multiple threads. For

example, reordering two accesses to different memory locations in a thread can

violate SC since another thread could “view” this reordering via concurrent ac-

cesses to those locations (Figure 1.2 demonstrates such a transformation). As

a result, SC precludes the use of common compiler optimizations (code motion,

loop transformations, etc.) and hardware optimizations (out-of-order execution,

store buffers, lockup-free caches, etc.). In order to allow these optimizations,

hardware architectures and programming languages provide a variety of relaxed

2The term memory model is used to describe both the contract between the programmer and
the programming language and the contract between the compiler (or programming language
implementation) and the hardware. The compiler, then, provides certain guarantees to the
programmer that it implements using the guarantees provided to it by the underlying hardware
architecture.
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memory models which are weaker (i.e., provide weaker guarantees) than SC.

2.4 Interaction of Memory Models and Data Races

Weak memory models allow relaxations of memory access ordering, but they must

also provide mechanisms to enforce ordering when program behavior requires it.

At the programming language level, this mechanism is usually provided in the

form of synchronization operations (including high-level mechanisms like locks as

well as individual memory accesses used for synchronization which are identified

using qualifiers such as volatile in Java [MPA05] and atomic in C++ [BA08]).

Hardware provides mechanisms such as memory fences and atomic operations

that compilers use to implement synchronization operations.

In recent years, there have been significant efforts to bring together language,

compiler, and hardware designers to standardize memory models for mainstream

programming languages. The consensus has been around memory models based

on the data-race-free-0 (DRF0) model [AH90], which attempts to strike a mid-

dle ground between simplicity for programmers and flexibility for compilers and

hardware. In the DRF0 model, compilers and hardware are restricted from per-

forming certain optimizations and reordering across synchronization operations

while programmers are guaranteed SC behavior for all properly synchronized pro-

grams (i.e., data-race-free programs).3 Unlike the full SC model, compilers and

hardware are still able to perform common, sequentially valid optimizations in

areas of code that do not contain synchronization operations.

The DRF0 model provides a simple and strong guarantee for data-race-free

3In DRF0 models, the definition of a data-race-free program requires the absence of a data
race in all SC executions of the program. In this dissertation, it is also assumed that Defini-
tions 2.2 through 2.6 need only consider sequentially consistent executions.
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programs, but it does not specify any semantics for programs that contain data

races. While such programs are typically considered erroneous, data races are

easy for programmers to accidentally introduce and are difficult to detect. The

DRF0 model therefore poses two important problems for programmers:

• Since a racy execution can behave arbitrarily in DRF0, it can violate desired

safety properties. For example, Boehm and Adve show how a sequentially

valid compiler optimization can cause a program to jump to arbitrary code

in the presence of a data race [BA08].

• Debugging an erroneous program execution is difficult under the DRF0

model because the programmer must always assume that there may have

been a data race. Therefore, it may not be sufficient to reason about the

execution using the intuitive sequential consistency model in order to un-

derstand and identify the error.

The recently proposed C++ memory model C++0x [BA08] is based on the

DRF0 model and shares these shortcomings. The Java memory model [MPA05]

addresses the first problem above by providing a semantics for racy programs

which is weaker than SC but still strong enough to ensure a useful form of safety.

However, this weaker semantics is subtle and complex, so the debuggability prob-

lem described above is not greatly improved.

Researchers have previously proposed the use of dynamic data race detection

to halt execution when it would become undefined by the memory model [AHM91,

Boe09, EQT07]. But due to the cost and complexity discussed in Section 2.2,

the use of precise data race detection for the purpose of preventing memory

model effects from confounding programmers is impractical, especially consider-

ing that the reason for providing a relaxed memory model is to enable perfor-
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mance optimization. Chapters 4 and 5 detail novel schemes for using imprecise,

hardware-assisted race detection which is targeted and efficient to achieve sim-

plified memory models with good performance.
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CHAPTER 3

LiteRace

Like most prior work in dynamic data race detection, LiteRace aims to find bugs.

In particular, its goal is to find data races with very low overhead so that it can

be run on a large number of executions. Ideally, the instrumentation would be so

lightweight that it could be used during beta testing of a product. The prohibitive

slowdown of existing detectors limits the amount of testing that can be done for

a given amount of time and resources. Also, users shy away from intrusive tools

that do not allow them to test realistic program executions. A second goal of

LiteRace is to provide this lightweight detection while never reporting a false

data race. Data races are very difficult to debug and triage. So false positives

severely limit the usability of a tool from a developer’s perspective.

As discussed earlier, precise data race detectors have an extremely high run-

time overhead, slowing down applications by 8× or more on average [FF09].1

(Intel’s Thread Checker [SBM06], incurs a performance overhead on the order of

200×.2) Such a slowdown is unacceptable for LiteRace, given its goal of being

1Data race detectors based on the lockset algorithm [SBN97] or a hybrid of lockset and
happened-before detection achieve better performance at the cost of precision. More details
are discussed in Chapter 6.

2FastTrack manages to get an 8× overhead both by using novel improvements in the
happened-before detection algorithm and also by targeting Java programs which can be in-
strumented using a specialized virtual machine. Intel’s Thread Checker, on the other hand, is
capable of instrumenting and finding races in arbitrary x86 binaries written in any language
and using all types of synchronization.
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usable during beta testing of applications. In order to achieve acceptable speed,

some sacrifice will have to be made in detection precision.

Rather than analyzing every memory access in a program, LiteRace uses

sampling to significantly reduce the cost of dynamic data race detection. While

a sampling approach may seem unlikely to find many data races (after all, most

memory accesses do not participate in a race and both racing accesses need to be

analyzed), experimental results show that a carefully chosen sampling algorithm

can be effective. The algorithm is based on the cold-region hypothesis that data

races are likely to occur when a thread is executing a “cold” code region (code

that it has not executed frequently). Data races that occur in hot regions of

well-tested programs either have already been found and fixed, or are likely to

be benign. The adaptive sampler starts off by sampling all the code regions at

100% sampling rate. But every time a code region is sampled, its sampling rate

is progressively reduced until it reaches a lower bound. Thus, cold regions are

sampled at a very high rate, while the sampling rate for hot regions is adaptively

reduced to a very small value. In this way, the adaptive sampler avoids slowing

down the performance-critical hot regions of a program.

The research presented in this chapter includes the following important con-

tributions:

• LiteRace demonstrates that the technique of sampling can be used to signif-

icantly reduce the runtime overhead of a data race detector without intro-

ducing any additional false positives. It is the first data race detection tool

that uses sampling to reduce the runtime performance cost. By permitting

users to adjust the sampling rate to provide a bound on the performance

overhead, LiteRace makes it feasible to enable data race detection even

during beta testing of industrial applications.
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• Several sampling strategies are explored. The results show that a naïve

random sampler is inadequate for maintaining a high detection rate while

using a low sampling rate. A more effective adaptive sampler that heavily

samples the first few executions of a function in each thread is proposed.

• An implementation of LiteRace using the Phoenix analysis framework [Mica]

is discussed. The tool was used to analyze Microsoft programs such as Con-

cRT and Dryad, open-source applications such as Apache and Firefox, and

two synchronization-heavy micro-benchmarks. The results show that, on

average, by logging less than 2% of memory operations, LiteRace can detect

nearly 70% of data races in a particular execution.

The rest of this chapter is organized as follows. §3.1 presents an overview of

a sampling based approach to reduce the runtime cost of a data race detector.

§3.2 details the implementation of the race detector. Experimental results are

presented in §3.3 and §3.4 concludes.

3.1 LiteRace Overview

This section presents a high-level overview of LiteRace. The implementation

details together with various design trade-offs are discussed in §3.2.

3.1.1 Case for Sampling

The key premise behind LiteRace is that sampling techniques can be effective for

data race detection. While a sampling approach has the advantage of reducing the

runtime overhead, the main trade-off is that it can miss data races. This trade-

off is acceptable for the following reasons. First, dynamic techniques cannot find
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all data races in the program anyway. They can only find data races on thread

interleavings and paths explored at runtime. Furthermore, a sampling-based

detector, with its low overhead, would encourage users to widely deploy it on

many more executions of the program, possibly achieving better coverage. Thus

as long as the sampling technique doesn’t miss too many races, it could prove

useful.

Another key advantage is that sampling techniques provide a useful knob

that allow users to trade runtime overhead for coverage. For instance, users can

increase the sampling rate for interactive applications that spend most of their

time waiting for user inputs. In such cases, the overhead of data race detection

is likely to be masked by the I/O latency of the application.

3.1.2 Events to Sample

Data race detection requires logging the following events at runtime.

• Synchronization operations are logged along with a logical timestamp that

reflects the happened-before relation between these operations.

• Reads and writes to memory are logged in the program order, logically

happening at the timestamp of the preceding synchronization operation of

the same thread.

These logs can then be analyzed offline or during program execution (§3.2.4).

The above information allows a data race detector to construct the happened-

before ordering between synchronization operations and the memory operations

executed in different threads. A data race is detected if there is no synchronization

ordering between two accesses to the same memory location, and at least one of

them is a write.

20



lock L

unlock L

write X
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reported on X!

lock L

unlock L

write X
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Not Logged

Figure 3.1: Failing to log a synchronization operation results in loss of happened-before edges.
As a result, a false data race on X would be reported.

Clearly instrumenting code to log every memory access would impose a signif-

icant overhead. By sampling only a fraction of these events, overhead is reduced

in two ways. First, the execution of the program is much faster because of the

reduced instrumentation. Second, the data race detection algorithm needs to

process fewer events making it faster as well.

While sampling can reduce runtime overhead, choosing which events to log

and which events not to log must be done carefully. In particular, LiteRace

must log all the synchronization events in order to avoid reporting false data

races. Figure 3.1 shows why this is the case. Synchronization operations induce

happened-before orderings between program events. Any missed synchronization

operation can result in missing edges in the happened-before graph. The data

race detection algorithm will therefore incorrectly report false races on accesses

that are otherwise ordered by the unlogged synchronization operations. To avoid

such false positives, it is necessary to log all synchronization operations. How-

ever, for most applications, the number of synchronization operations is small

compared to the number of instructions executed in a program. Thus, logging

all synchronization operations does not cause significant performance overhead.
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Memory accesses can, however, be selectively sampled. If LiteRace chooses

not to log a particular memory access, it may miss a data race involving that

access (a false negative). As discussed in §3.1.1, this is an acceptable trade-

off. But, a good strategy for selecting which memory accesses to log is essential

in order not to miss too many races. A data race involves two accesses and a

sampler needs to successfully log both of them to detect the race. A sampler that

accomplishes this is described below.

3.1.3 Sampler Granularity

In LiteRace, every function body is a unit of sampling. A static instrumentation

tool creates two copies for each function as shown in Figure 3.2. The instru-

mented function logs all the memory operations (their addresses and program

counter values) and synchronization operations (memory addresses of the syn-

chronization variables along with their timestamps) executed in the function.

The un-instrumented copy of the function logs only the synchronization opera-

tions. Before entering a function, the sampler (represented as dispatch check in

Figure 3.2) is executed. Based on the decision of the sampler, either the instru-

mented copy or the un-instrumented copy of the function is executed. As the

dispatch check happens once per function call, it is essential that the dispatch

code is as efficient as possible.

3.1.4 Thread Local Adaptive Bursty Sampler

There are two requirements for a sampling strategy. Ideally, a sampling strategy

should maintain a high data race detection rate even with a low sampling rate.

Also, it should enable an efficient implementation of the dispatch check that

determines if a function should be sampled or not. A naïve random sampler does
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not meet these requirements as shown in §3.3.

The LiteRace sampler is an extension of the adaptive bursty sampler [HC04],

previously shown to be successful for detecting memory leaks. An adaptive bursty

sampler starts off by analyzing a code region at a 100% sampling rate, which

means that the sampler always runs the instrumented copy of a code region the

first time it is executed. Since the sampler is bursty, when it chooses to run the

instrumented copy of a region, it does so for several consecutive executions. The

sampler is adaptive in that after each bursty sample, a code region’s sampling

rate is decreased until it reaches a lower bound.

To make the adaptive bursty sampler effective for data race detection, the

above algorithm is modified to make it “thread local”. The rationale is that, at

least in reasonably well-tested programs, data races occur when a thread executes

a cold region. Data races between two hot paths are unlikely – either such a data

race is already found during testing and fixed, or it is likely to be a benign or

intentional data race. In a “global” adaptive bursty sampler [HC04], a particular

code region can be considered “hot” even when a thread executes it for the first

time. This happens when other threads have already executed the region many

times. LiteRace avoids this by maintaining separate sampling information for

each thread, effectively creating a “thread local” adaptive bursty sampler. The

experiments in §3.3 show that this extension significantly improves the detection

rate.

Note that a thread-local adaptive sampler can also find some data races that

occur between two hot regions or between a hot and a cold region. The reason is

that LiteRace’s adaptive sampler initially assumes that all the regions are cold,

and the initial sampling rate for every region is set to 100%. Also, the sampling

rate for a region is never reduced below a lower bound. As a result, the sampler,
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Figure 3.2: LiteRace Instrumentation.

even while operating at a lower sampling rate, might still be able to gather enough

samples for a frequently executed hot region. Thus LiteRace’s adaptive sampler

is still able to find some data races between hot-hot regions and hot-cold regions

in a program.

3.2 LiteRace Implementation

This section describes the implementation details of LiteRace.

3.2.1 Instrumenting the Code

LiteRace is based on static instrumentation of x86 binaries and does not re-

quire the source code of the program. It was built by using the Phoenix [Mica]

compiler and analysis framework to parse the x86 executables and perform the

transformation depicted in Figure 3.2. LiteRace creates two versions for each

function: an instrumented version that logs all the memory operations and an

uninstrumented version that does not log any memory operation. As explained

in §3.1, avoiding false positives requires instrumenting both the instrumented and

the uninstrumented versions to log synchronization operations. Then, LiteRace

inserts a dispatch check at every function entry. This check decides which of the

two versions to invoke for a particular call of the function at runtime.

In contrast to prior adaptive sampling techniques [HC04], LiteRace maintains
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profiling information per thread. For each thread, LiteRace maintains a buffer in

the thread-local storage that is allocated when the thread is created. This buffer

contains two counters for each instrumented function: the frequency counter

and the sampling counter. The frequency counter keeps track of the number

of times the thread has executed a function and determines the sampling rate

to be used for the function (a frequently executed function will be sampled at

a lower sampling rate). The sampling counter is used to determine when to

sample the function next. On function entry, the dispatch check decrements

the sampling counter corresponding to that function. If the sampling counter’s

value is non-zero, which is the common case, the dispatch check invokes the

uninstrumented version of the function. Once the sampling counter reaches zero,

the dispatch check invokes the instrumented version of the function for the next

several invocations, depending on the configured burst length. After the last

invocation in the sampled burst, the dispatch check code sets the sampling counter

to a new value based on the current sampling rate for the function as determined

by the frequency counter.

As the dispatch check is executed on every function entry, it is important to

keep the overhead of this check low. To avoid the overhead of calling standard

APIs for accessing thread-local storage, LiteRace implements an inlined version

using the Thread Execution Block [Micb] structure maintained by the Windows

OS for each thread. Also, the dispatch check uses a single register edx for its

computation. The instrumentation tool analyzes the original binary for the func-

tion to check if this register and the eflags register are live at function entry,

and injects code to save and restore these registers only when necessary. In the

common case, LiteRace’s dispatch check involves 8 instructions with 3 memory

references and 1 branch (that is mostly not taken). The runtime overhead of the

dispatch check is measured in the experiments described in §3.3.
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Table 3.1: How LiteRace logs synchronization operations.

Synchronization Op SyncVar Add’l Sync?
Lock / Unlock Lock Object Address No
Wait / Notify Event Handle No
Fork / Join Child Thread Id No
Atomic Machine Ops Target Memory Addr. Yes

3.2.2 Tracking Happened-before

As mentioned earlier, avoiding false positives requires accurate happened-before

data. It is trivial to ensure that the happened-before relation for events of the

same thread is correctly recorded since the logging code executes on the same

thread as the events being logged. Correctly capturing the happened-before data

induced by the synchronization operations between threads in a particular pro-

gram execution requires more work.

For each synchronization operation, LiteRace logs a SyncVar that uniquely

identifies the synchronization object and a logical timestamp that identifies the

order in which threads perform operations on that object. Table 3.1 shows how

LiteRace determines the SyncVar for various synchronization operations. For

instance, LiteRace uses the address of the lock object as a SyncVar for lock

and unlock operations. The logical timestamp in the log should ensure that if

a and b are two operations on the same SyncVar and a <hb b, then a has a

smaller timestamp than b. The simplest way to implement the timestamp is to

maintain a global counter that is atomically incremented at every synchroniza-

tion operation. However, the contention introduced by this global counter can

dramatically slowdown the performance of LiteRace-instrumented programs on

multi-processors. To alleviate this problem, LiteRace uses one of 128 counters

uniquely determined by a hash of the SyncVar for the logical timestamp.

To ensure the accuracy of the happened-before relation, it is important that
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LiteRace computes and logs the logical timestamp atomically with the synchro-

nization operation performed. For some kinds of synchronization, the semantics

of the operation can be leveraged to guarantee this. For instance, by logging

and incrementing the timestamp after a lock instruction and before an unlock

instruction, it is guaranteed that an unlock operation on a particular mutex will

have a smaller timestamp than a subsequent lock operation on that same mutex

in another thread. For wait/notify operations, LiteRace increments and logs the

timestamp before the notify operation and after the wait operation to guarantee

consistent ordering. A similar technique is used for fork/join operations.

For some synchronization operations, however, LiteRace is forced to add addi-

tional synchronization to guarantee atomic timestamping. For example, consider

a target program that uses atomic compare-and-exchange instructions to imple-

ment its own locking. Since LiteRace doesn’t know if a particular compare-and-

exchange is acting as a “lock” or as an “unlock”, it introduces a critical section to

ensure that the compare-and-exchange and the logging and incrementing of the

timestamp are all executed atomically. Without this, LiteRace could generate

timestamps for these operations that are inconsistent with the actual order. This

additional effort is absolutely essential in practice, and running LiteRace without

this additional synchronization results in hundreds of false data races for some

benchmarks.

3.2.3 Handling Dynamic Allocation

Another subtle issue is that a dynamic data race detector should account for the

reallocation of the same memory to a different thread. A naïve detector might

report a data race between accesses to the reallocated memory with accesses

performed during a prior allocation. To avoid such false positives, LiteRace
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additionally monitors all memory allocation routines and treats them as addi-

tional synchronization performed on the memory page containing the allocated

or deleted memory.

3.2.4 Analyzing the Logs

The LiteRace profiler generates a stream of logged events during program execu-

tion. The current implementation writes these events to the disk and processes

them offline to find data races. The main motivation for this design decision was

to minimize perturbation of the runtime execution of the program. It would also

be possible to use an online detector, possibly avoiding a runtime slowdown by

using an idle core in a many-core processor. The logged events are processed us-

ing a standard implementation [SBM06] of the happened-before based data race

detector described in §2.2.

3.3 Results

This section presents experimental results from running LiteRace. §3.3.1 de-

scribes the benchmarks and §3.3.2 explains the samplers that are evaluated. In

§3.3.3, the effectiveness of the various samplers in detecting data races is explored.

The results show that LiteRace’s thread-local adaptive sampler achieves a high

data race detection rate, while maintaining a low sampling rate. §3.3.4 discusses

the performance and log size overhead of the thread-local adaptive sampler im-

plemented in LiteRace, and compares it to an implementation that logs all the

memory operations. All experiments were run on a Windows Server 2003 system

with two dual-core AMD Opteron processors and 4 GB of RAM.
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3.3.1 Benchmarks

The four industrial-scale concurrent programs listed in Table 3.2 were used as

benchmarks. Dryad is a distributed execution engine, which allows programmers

to use a computing cluster or a data center for running coarse-grained data-

parallel applications [IBY07]. The test harness used for Dryad was provided by

its lead developer. The test exercises the shared-memory channel library used

for communication between the computing nodes in Dryad. Experiments were

run with two versions of Dryad, one with the standard C library statically linked

in (referred to as Dryad-stdlib), and the other without. For the former, LiteR-

ace instruments all the standard library functions called by Dryad. The second

benchmark, ConcRT, is a concurrent run-time library that provides lightweight

tasks and synchronization primitives for developing data-parallel applications. It

is part of the parallel extensions to the .NET framework [Duf07]. Two different

test inputs for ConcRT were used: Messaging, and Explicit Scheduling. These are

part of the ConcRT concurrency test suite. Apache, an open-source HTTP web

server, is the third benchmark. Overhead and effectiveness of LiteRace are evalu-

ated for two different Apache workloads (referred to as Apache-1 and Apache-2).

The first consists of a mixed workload of 3000 requests for a small static web page,

3000 requests for a larger web page, and 1000 CGI requests. The second consists

solely of 10,000 requests for a small static web page. For both workloads, up to 30

concurrent client connections are generated by Apache’s benchmarking tool. The

final benchmark is Firefox, the popular open-source web browser. The overhead

and sampler effectiveness for the initial browser start-up (Firefox-Start) and for

rendering an html page consisting of 2500 positioned DIVs (Firefox-Render) are

measured.
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Table 3.2: Benchmarks used to evaluate LiteRace. The number of functions and the binary
size includes executable and any instrumented library files.

Benchmarks Description # Fns Bin. Size
Dryad Library for distributed

data-parallel apps
4788 2.7 MB

ConcRT .NET Concurrency runtime
framework

1889 0.5 MB

Apache 2.2.11 Web server 2178 0.6 MB
Firefox 3.6a1pre Web browser 8192 1.3 MB

Table 3.3: Samplers evaluated along with their short names used in figures, short descriptions,
and effective sampling rates averaged over the benchmarks studied. The weighted average uses
the number of memory accesses in each benchmark application as a weight.

Short Weighted Average
Sampling Strategy Name Description Avg ESR ESR
Thread-local Adaptive TL-Ad Adaptive back-off per

function / per thread
(100%,10%,1%,0.1%);
bursty

1.8% 8.2%

Thread-local Fixed 5% TL-Fx Fixed 5% per function / per
thread; bursty

5.2% 11.5%

Global Adaptive G-Ad Adaptive back-off per func-
tion globally (100%, 50%,
25%, ... , 0.1%); bursty

1.3% 2.9%

Global Fixed G-Fx Fixed 10% per function glob-
ally; bursty

10.0% 10.3%

Random 10% Rnd10 Random 10% of dynamic
calls chosen for sampling

9.9% 9.6%

Random 25% Rnd25 Random 25% of dynamic
calls chosen for sampling

24.8% 24.0%

Un-Cold Region UCP First 10 calls per function
/ per thread are NOT sam-
pled, all remaining calls are
sampled

98.9% 92.3%
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Figure 3.3: Proportion of static data races found by various samplers. The figure also shows the
weighted average effective sampling rate for each sampler, which is the percentage of memory
operations logged (averaged over all the benchmarks).

3.3.2 Evaluated Samplers

The samplers that are evaluated are listed in Table 3.3. The “Short Name” column

shows the abbreviation that is used for the samplers in the figures throughout the

rest of this section. The table also shows the effective sampling rate (ESR) for

each sampler. The effective sampling rate is the percentage of memory operations

that are logged by a sampler. Two averages for effective sampling rate are shown.

One is just the average of the effective sampling rates over the nine benchmark-

input pairs described in §3.3.1. The other is the weighted average, where the

weight for a benchmark-input pair is based on the number of memory operations

executed at runtime.

LiteRace’s thread-local adaptive sampler is the first one listed in the table. For

each thread and for each function, this sampler starts with a 100% sampling rate

and then progressively reduces the sampling rate until it reaches a base sampling

rate of 0.1%. To understand the utility of this adaptive back-off, a thread-local

fixed sampler is evaluated. It uses a fixed 5% sampling rate per function per

thread. The next two samplers are “global” versions of the two samplers that

were just described. The adaptive back-off for the “global” sampler is based on

the number of executions of a function, irrespective of the calling thread. This
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Figure 3.4: Various samplers’ detection rate for rare (on the top) and frequent (on the bottom)
static data races.
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global adaptive sampler is similar to the one used in SWAT [HC04], except that

it uses a higher sampling rate. Even with a higher rate, the experimental results

show that the global samplers are not as effective as the thread-local samplers in

finding data races. The four samplers mentioned thus far are “bursty”. That is,

when they decide to sample a function, they do so for ten consecutive executions

of that function. The next two samplers are based on random sampling and are

not bursty. Each function call is randomly sampled based on the chosen sampling

rate (10% and 25%). The final sampler evaluates the cold-region hypothesis by

logging only the “uncold” regions. That is, it logs all but the first ten calls of a

function per thread.

3.3.3 Effectiveness of Samplers Comparison

In this section, the different samplers are compared and the thread-local adaptive

sampler is shown to be the most effective of all the samplers evaluated. In the

evaluation, the data races detected by the tool are grouped based on the pair of

instructions (identified by the value of the program counter) that participate in

the data race. Each group is refered to as a static data race. From the user’s

perspective, a static data race roughly corresponds to a possible synchronization

error in the program. Table 3.4 shows the total number of static data races

exhibited during an execution for each benchmark-input pair. The table also

distinguishes between rare and frequent static data races, based on the number

of times a particular static data race manifests at runtime.

To have a fair comparison, different samplers need to be evaluated on the

same thread interleaving of a program. However, two different executions of a

multi-threaded program are not guaranteed to yield the same interleaving even

if the input is the same. To compare the effectiveness of the various samplers
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in detecting data races accurately, a modified version of LiteRace that performs

full logging was created. It logs all synchronization and all memory operations.

In addition to full logging, the “dispatch check” logic for each of the evaluated

samplers is executed upon function entry. The modified detector keeps track

of whether or not each of the samplers would have logged a particular memory

operation.

By performing data race detection on the complete log, all the data races

that happened during the program’s execution are found. Data race detection

is then performed on the subset of the memory operations that a particular

sampler would have logged. Then, by comparing the results with those from the

complete log, the detection rate (proportion of data races detected by each of

the samplers) is calculated. Note, however, that the results for performance and

space overhead in §3.3.4 use the unmodified version of LiteRace with only the

thread-local adaptive sampler turned on.

Each application was instrumented using the modified version of LiteRace

described above. The instrumented application was run three times for each

benchmark. The reported detection rate for each benchmark is the average of

the three runs. The results for overall data race detection rate are shown in

Figure 3.3. The results are grouped by benchmarks with a bar for each sampler

within each group. The weighted average effective sampling rate for each of the

samplers (discussed in §3.3.2) is also shown as the last group. A sampler is

effective if it has a very low effective sampling rate along with a high data race

detection rate. Notice that the proposed LiteRace sampler (TL-Ad) achieves this,

as it detects about 70% of all data races by sampling only 1.8% of all memory

operations. The non-adaptive fixed rate thread-local sampler also detects about

72% of data races, but its effective sampling rate is 5.2% (more than 2.5x higher
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than the TL-Ad sampler). Clearly, among the thread-local samplers, the adaptive

sampler is better than the fixed rate sampler.

The two thread-local samplers outperform the two global samplers. Though

the global adaptive sampler logs only 1.3% of memory operations (comparable to

the thread-local adaptive sampler), it detects only about 22.7% of all data races

(about 3x worse than TL-Ad). The global fixed rate sampler logs 10% of memory

operations, and still detects only 48% of all data races.

All the four samplers based on cold-region hypothesis are better than the two

random samplers. For instance, a random sampler finds only 24% of data races,

but logs 9.9% of all memory operations.

Another notable result from the figure is that of the “Un-Cold Region” sam-

pler, which logs all the memory operations except those executed in the cold-

regions (§3.3.2). It detects only 32% of all data races, but logs nearly 99% of all

memory operations. This result validates the cold-region hypothesis.

Table 3.4: Number of static data races found for each benchmark-input pair (median over
three dynamic executions), while logging all the memory operations. These static data races
are classified into rare and frequent categories. A static data race is rare, if it is detected less
than 3 times per million non-stack memory instructions during any execution of the program.

Benchmarks # races found # Rare # Freq
Dryad Channel + stdlib 19 17 2
Dryad Channel 8 3 5
Apache-1 17 8 9
Apache-2 16 9 7
Firefox Start 12 5 7
Firefox Render 16 10 6
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3.3.3.1 Rare Versus Frequent Data Race Detection

The results so far demonstrate that a thread-local adaptive sampler finds about

70% of all static data races. If a static data race occurs frequently during an

execution, then it is likely that many sampling strategies would find it. It is

more challenging to find data races that occur rarely at run-time. To quantify

this, all of the static data races that were detected (using the full, unsampled

log) were classified based on the number of times that a static data race occured

in an execution. Those racing instruction pairs that occurred fewer than 3 times

for each million non-stack memory instructions executed are classified as rare.

The rest are considered frequent. The number of rare and frequent data races for

each benchmark-input pair is shown in Table 3.4 (some of the data races found

could be benign). The various samplers’ data race detection rates for these two

categories are shown in Figure 3.4.

Most of the samplers perform well for the frequent data races. But, for in-

frequently occurring data races, the thread-local samplers are the clear winners.

Note that the random sampler finds very few rare data races.

3.3.4 Analysis of Overhead

§3.3.3 presented results showing that the thread-local adaptive sampler performs

well in detecting data races for a low sampling rate. Here the performance and

log size overhead of thread-local adaptive sampler implemented in LiteRace is

described. The results show that it incurs about 28% performance overhead for

the benchmarks when compared to no logging, and is up to 25 times faster than

an implementation that logs all the memory operations.

Apart from the benchmarks used in §3.3.3, two additional compute and syn-
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Table 3.5: Performance overhead of LiteRace’s thread-local adaptive sampler and full logging
implementation when compared to the execution time of the uninstrumented application. Log
size overhead in terms of MB/s is also shown.

LiteRace Full Logging
Baseline LiteRace Full Logging Log Size Log Size

Benchmarks Exec Time Slowdown Slowdown (MB/s) (MB/s)
LKRHash 3.3s 2.4x 14.7x 154.5 1936.3
LFList 1.7s 2.1x 16.1x 92.5 751.7

Dryad+stdlib 6.7s 1x 1.8x 1.2 12.8
Dryad 6.6s 1x 1.14x 1.1 2.6
ConcRT Messaging 9.3s 1.03x 1.08x 0.7 10.6
ConcRT Explicit Scheduling 11.5s 2.4x 9.1x 4.6 109.7
Apache-1 17.0s 1.02x 1.4x 1.2 41.9
Apache-2 3.0s 1.04x 3.2x 4.0 260.7
Firefox Start 1.8s 1.44x 8.89x 7.4 107.0
Firefox Render 0.61s 1.3x 33.5x 19.8 731.1

Average 6.15s 1.47x 9.09x 28.6 396.5

Average (w/o Microbench) 7.06s 1.28x 7.51x 5.0 159.6

chronization intensive micro-benchmarks were used for the performance study.

LKRHash is an efficient hash table implementation that uses a combination of

lock-free techniques and high-level synchronizations. LFList is an implementa-

tion of a lock-free linked list available from [Bus]. LKRHash and LFList execute

synchronization operations more frequently than the other real world benchmarks

we studied. These micro-benchmarks are intended to test LiteRace’s performance

in the adverse circumstance of having to log many synchronization operations.

To measure the performance overhead, each of the benchmarks was run ten

times for each of four different configurations. The first configuration is the

baseline, uninstrumented application. Each of the remaining three configurations

adds a different portion of LiteRace’s instrumentation overhead: the first adds

just the dispatch check, the second adds the logging of synchronization operations,

and the final configuration is the complete LiteRace instrumentation including

the logging of the sampled memory operations. By running the benchmarks in

all of these configurations, the cost attributable to the different components of

37



0

0.5

1

1.5

2

2.5

3

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Logging Mem Ops

Logging Synch Ops

Dispatch Check

Baseline

Figure 3.5: LiteRace slowdown over the uninstrumented application.

LiteRace can be measured.

Figure 3.5 shows the cost of using LiteRace on the various benchmarks and

micro-benchmarks. The bottom portion of each vertical bar in Figure 3.5 repre-

sents the (normalized) time it takes to run the uninstrumented, baseline applica-

tion. The overhead incurred by the various components of LiteRace are stacked

on top of that. As expected, the synchronization intensive micro-benchmarks

exhibit the highest overhead, between 2× and 2.5×, since all synchronization op-

erations must be logged to avoid false positives. The ConcRT Scheduling test also

has a high proportion of synchronization operations and exhibits overhead sim-

ilar to the micro-benchmarks. The more realistic application benchmarks show

modest performance overhead of 0% for Dryad, 2% to 4% for Apache, and 30%

to 44% for Firefox.

In order to evaluate the importance of sampling memory operations in or-

der to achieve low overhead, the performance of logging all the synchronization

and memory accesses was measured. Unlike the LiteRace implementation, this

full-logging implementation did not have the overhead for any dispatch checks

or cloned code. Table 3.5 compares the slowdown caused by LiteRace to the

slowdown caused by full logging. The sizes of the log files generated for these two
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implementations are also shown in terms of MB/s. LiteRace performs better than

full logging in all cases. The performance overhead over baseline when averaged

over realistic benchmarks is 28% for the LiteRace implementation, while the full

logging implementation incurs about 7.5× performance overhead.

The generated logs, as expected, are also much smaller in LiteRace. On

average, LiteRace generated logs at the rate of 5.0 MB/s, whereas a full logging

implementation generated about 159.6 MB/s.

3.4 LiteRace Summary

Because data races often indicate bugs in complex, multithreaded programs, dy-

namic data race detection can be a great boon to programmers and testers. But

the high overhead of precise detectors hinders adoption and limits the number

of executions on which detection can be performed, thus limiting the number of

bugs which are uncovered.

By making carefully chosen sacrifices, LiteRace makes dynamic race detection

for the purposes of bug finding practical. By choosing to focus effort on per-thread

cold paths, LiteRace achieves a high race detection rate with a low sampling rate.

By choosing to pay the cost of logging all synchronization operations, LiteRace

avoids false positives which could cost testers and programmers precious time.

The thread-local adaptive sampler manages to find nearly 70% of data races by

sampling only 2% of memory accesses. This translates into low overhead (28% on

average in the evaluated benchmarks) which makes running detection on a large

number of executions possible.
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CHAPTER 4

DRFx

The previous chapter discussed LiteRace which uses dynamic race detection to

uncover potential bugs in programs. Data races can cause bugs in programs

even when they are run using sequentially consistent semantics. However, as

discussed previously, compilers and hardware actually provide memory models

that are weaker than SC, and under these models programs cannot be intuitively

reasoned about as an interleaving of the instructions from the different threads.

As discussed in Chapter 2, consensus has been building around a class of pro-

gramming language memory models known as DRF0 which attempt to balance

ease of programming with opportunities for compiler and hardware optimization.

While these models provide programmers with a simple and strong guarantee for

data-race-free programs (the observed behavior will be sequentially consistent),

programmers are given much weaker guarantees, or even the possibility of com-

pletely arbitrary behavior, for programs with data races. This undermines the

safety of the program as well as the ease of debugging. Furthermore, proving

the correctness and safety of various compiler and hardware optimizations under

some DRF0 memory models continues to be a challenge [SA08, CKS07]. The

research in this chapter demonstrates how efficient, imprecise data race detec-

tion can be used to support a new memory model called drfx that solves these

problems.
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4.1 Introduction to the drfx Memory Model

The drfx memory model uses an imprecise form of data race detection in order to

provide straightforward guarantees to the programmer while still allowing most

standard compiler and hardware optimizations. Despite missing some data races,

the detection used provides the basis for a strong guarantee. The technique is

inspired by the observation of Gharachorloo and Gibbons [GG91] that to provide

a useful guarantee to programmers, it suffices to detect only the data races that

cause SC violations, and that such detection can be much simpler than full-fledged

race detection.

The drfx model introduces the notion of a dynamic memory model (MM)

exception which halts a program’s execution. drfx guarantees two key properties

for any program P:

• DRF: If P is data-race free then every execution of P is sequentially con-

sistent and does not raise an MM exception.

• Soundness: If sequential consistency is violated in an execution of P,

then the execution eventually terminates with an MM exception.

These two properties allow programmers to safely reason about all programs,

whether race-free or not, using SC semantics: any program’s execution that does

not raise an MM exception is guaranteed to be SC. On the other hand, if an

execution of P raises an MM exception, then the programmer knows that the

program has a data race.

While the Soundness guarantee ensures that an SC violation will eventually be

caught, an execution’s behavior is undefined between the point at which the SC
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violation occurs and the exception is raised. The drfx model therefore guarantees

an additional property:

• Safety: If an execution of P invokes a system call, then the observable

program state at that point is reachable through an SC execution of P.

Intuitively the above property ensures that any system call in an execution of P

would also be invoked with exactly the same arguments in some SC execution of P.

This property ensures an important measure of safety and security for programs

by prohibiting undefined behavior from being externally visible.

4.1.1 A Compiler and Hardware Design for drfx

Gharachorloo and Gibbons describe a hardware mechanism to detect SC viola-

tions [GG91]. Their approach dynamically detects conflicts between concurrently

executing instructions. Two memory operations are said to conflict if they ac-

cess the same memory location, at least one operation is a write, and at least

one of the operations is not a synchronization access. While simple and effi-

cient, this approach only handles hardware reorderings and does not consider

the effect of compiler optimizations. As a result, their approach guarantees the

DRF and Soundness properties with respect to the compiled version of a pro-

gram but does not provide any guarantees with respect to the original source

program [GG91, CDL09].

A key contribution of drfx is the design and implementation of a detection

mechanism for SC violations that properly takes into account the effect of both

compiler optimizations and hardware reorderings while remaining lightweight and

efficient. The approach employs a novel form of cooperation between the compiler

and the hardware. The notion of a region, which is a single-entry, multiple-exit
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portion of a program, is introduced. The compiler partitions a program into

regions, and both the compiler and the hardware may only optimize within a

region. Each synchronization access must be placed in its own region, thereby

preventing reorderings across such accesses. It is also required that each system

call be placed in its own region, which allows drfx to guarantee the Safety prop-

erty. Otherwise, a compiler may choose regions in any manner in order to aid

optimization and/or simplify runtime conflict detection. Within a region, both

the compiler and hardware can perform many standard sequentially valid opti-

mizations. For example, unrelated memory operations can be freely reordered

within a region, unlike the case for the traditional SC model.

To ensure the drfx model’s DRF and Soundness properties with respect to

the original program, I will show that it suffices to detect region conflicts be-

tween concurrently executing regions. Two regions R1 and R2 conflict if there

exists a pair of conflicting operations (o1, o2) such that o1 ∈ R1 and o2 ∈ R2. Such

conflicts can be detected using runtime support similar to conflict detection in

transactional memory (TM) systems [HM93]. As in TM systems, both software

and hardware conflict detection mechanisms can be considered for supporting

drfx. A hardware detection mechanism is pursued in this implementation, since

the required hardware logic is fairly simple and is similar to existing bounded

hardware transactional memory (HTM) implementations such as Sun’s Rock pro-

cessor [DLM09]. In fact, the hardware design can be significantly simpler than

that of a TM system. Unlike TM hardware, which needs complex support for

versioning and checkpointing to enable rollback upon detecting a conflict, drfx

hardware only needs support for raising an exception on a conflict. Also, a drfx

compiler can bound the number of memory bytes accessed in each region, en-

abling the hardware to perform conflict detection using finite resources. While

small regions limit the scope of compiler and hardware optimizations, an approach
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discussed in §4.4 allows most of the lost optimization potential to be recovered.

4.1.2 Contributions

The research presented in this chapter makes the following contributions:

• The drfx memory model for concurrent programming languages is defined

via three simple and strong guarantees for programmers (§4.2). A set of

conditions on a compiler and hardware design that are sufficient to enforce

the drfx memory model is established.

• A formalization of the drfx memory model as well as of the compiler and

hardware requirements (§4.3) is presented. A proof that these requirements

are sufficient to enforce drfx is outlined.

• A concrete compiler and hardware instantiation of the approach (§4.4) is

presented. An implementation of a drfx-compliant compiler on top of

LLVM [LA04] is described, including an efficient solution for bounding re-

gion sizes so that a processor can detect conflicts using finite hardware

resources.

• The performance cost of this compiler and hardware instantiation is evalu-

ated in terms of lost optimization opportunity for programs in the Parsec

and SPLASH-2 benchmark suites (§4.5). The results show that the per-

formance overhead is on average 11% when compared to the baseline fully

optimized implementation.

44



4.2 Overview of drfx

This section gives an overview of how the drfx memory model works. It first

motivates and gives context by delving into more detail on some of the topics

touched on in Chapter 2, including the interaction of optimizations and data

races, and the impracticality of precise data race detection for the purpose of

simplifying memory models. A description of the drfx approach to targeted

detection of problematic races follows.

4.2.1 Compiler Transformations in the Presence of Races

It is well known that sequentially valid compiler transformations, which are cor-

rect when considered on a single thread in isolation, can change program behavior

in the presence of data races [AH90, GLL90, MPA05]. Consider the C++ exam-

ple from Figure 1.2(a) described in Chapter 1. Thread t uses a Boolean variable

init to communicate to thread u that the object x is initialized. Note that al-

though the program has a data race, the program will not incur a null dereference

on any SC execution.

Consider a compiler optimization that transforms the program by reordering

instructions A and B in thread t. This transformation is sequentially valid, since

it reorders independent writes to two different memory locations. However, this

reordering introduces a null dereference (and violates SC) in the interleaving

shown in Figure 1.2(b).1 The same problem can occur as a result of out-of-order

execution at the hardware level.

To avoid SC violations, languages have adopted memory models based on the

1Although this “optimization” may seem contrived, many compiler optimizations effectively
reorder accesses to shared memory. Detailed examples can be found in the next chapter (§5.2).
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X* x = null;

atomic bool init = false;

// Thread t // Thread u

A: x = new X(); C: if(init)

B: init = true; D: x->f++;

Figure 4.1: Correct, data-race-free version of program from Figure 1.2

DRF0 model [AH90]. Such models guarantee SC for programs that are free of

data races. The data race in our example program can be eliminated by ex-

plicitly annotating the variable init as atomic (volatile in Java 5 and later).

This annotation tells the compiler and hardware to treat all accesses to a vari-

able as “synchronization”. As such, (many) compiler and hardware reorderings

are restricted across these accesses, and concurrent conflicting accesses to such

variables do not constitute a data race. As a result, the revised C++ program

shown in Figure 4.1 is data-race-free and its accesses cannot be reordered in a

manner that violates SC.

4.2.2 Writing Race-Free Programs is Hard

For racy programs, on the other hand, DRF0 models provide much weaker guar-

antees than SC. For example, the proposed C++ memory model [BA08] considers

data races as errors akin to out-of-bounds array accesses and provides no seman-

tics to racy programs. This approach requires that programmers write race-free

programs in order to be able to meaningfully reason about their program’s be-

havior. But races are a common flaw, and thus it is unacceptable to require a

program be free of these bugs in order to reason about its behavior. As an exam-

ple, consider the program in Figure 4.2 in which the programmer attempted to
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X* x = null;

bool init = false;

// Thread t // Thread u

A: lock(L); E: lock(M)

B: x = new X(); F: if(init)

C: init = true; G: x->f++;

D: unlock(L); H: unlock(M)

Figure 4.2: An incorrect attempt at fixing the program from Figure 1.2.

fix the data race in Figure 1.2(a) using locks. Unfortunately, the two threads use

different locks, an error that is easy to make, especially in large software systems

with multiple developers.

Unlike out-of-bounds array accesses, there is no comprehensive language or

library support to avoid data race errors in mainstream programming languages.

Further, like other concurrency errors, data races are nondeterministic and can

be difficult to trigger during testing. Even if a race is triggered during testing, it

can manifest itself as an error in any number of ways, making debugging difficult.

Finally, the interaction between data races and compiler/hardware transforma-

tion can be counter-intuitive to programmers, who naturally assume SC behavior

when reasoning about their code.

4.2.3 Detecting Data Races Is Expensive

This problem with prior data-race-free models has led researchers to propose to

detect and terminate executions that exhibit a data race in the program [AHM91,

Boe09, EQT07]. Note that it is not sufficient to only detect executions that
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// Thread t // Thread u

A: lock(L);

C: init = true;

E: lock(M)

F: if(init)

G: x->f++;

H: unlock(M);

B: x = new X();

D: unlock(L);

// Thread t // Thread u

A: lock(L);

C: init = true;

B: x = new X();

D: unlock(L);

E: lock(M)

F: if(init)

G: x->f++;

H: unlock(M)

(a) (b)

Figure 4.3: A program with a data race may or may not exhibit SC behavior at runtime.
(a) Interleaving that exposes the effect of a compiler reordering. (b) Interleaving that does not.

exhibit a strictly simultaneous data race (Definition 2.2). While the existence

of such an execution implies the existence of a data race in the program, other

executions, which are racy only according to the more permissive Definition 2.6,

can also suffer from SC violations. Figure 4.3(a) shows such an execution for the

improperly synchronized code in Figure 4.2. When executing under a relaxed

memory model, statements B and C can be reordered. The interleaving shown

in Figure 4.3(a) suggests an execution where the racing accesses to init do

not occur simultaneously, but non-SC behavior (null dereference upon executing

statement G) can occur. The execution does have a happened-before data race

by Definition 2.6.

As discussed at length in the previous chapters, precise happened-before-based

data race detection is slow and thus impractical for memory model purposes. Fur-

thermore, imprecision such as that introduced by LiteRace or prior fast detection

techniques cannot provide the drfx soundness guarantee since races resulting in

48



Figure 4.4: The relationships among various properties of a program execution.

violation of SC may be missed.

4.2.4 Detecting SC Violations is Enough

Although implementing drfx requires detecting all races that may cause non-

SC behavior, there are some races that do not violate SC [GG91]. Thus, full

happened-before race detection, while useful for debugging, is overly strong for

simply ensuring executions are SC. For example, even though the interleaving in

Figure 4.3(b) contains a happened-before data race, the execution does not result

in a program error. The hardware guarantees that all the memory accesses issued

while holding a lock are completed before the lock is released. Since the unlock

at D completes before the lock at E, the execution is sequentially consistent even

though the compiler reordered the instructions B and C. Therefore, the memory

model can safely allow this execution to continue. On the other hand, executions

like the one in Figure 4.3(a) do in fact violate SC and should be halted with a

memory model (MM) exception.

The Venn diagram in Figure 4.4 clarifies this argument (ignore the RCF and

RS sets for now). SC represents the set of all executions that are sequentially
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consistent with respect to a program P. DRF is the set of executions that are

data-race free. To satisfy the DRF and Soundness properties described in §4.1,

all executions in DRF must be accepted and all executions that are not in SC

must be terminated. However, the model allows flexibility for executions that

are not in DRF but are in SC: it is acceptable to admit such executions since they

are sequentially consistent, but it is also acceptable to terminate such executions

since they are racy. This flexibility allows for a much more efficient detector than

full-fledged race detection, as described below.

The drfx memory model only guarantees that non-SC executions eventually

terminate with an exception. This allows SC detection to be performed lazily,

thereby further reducing the conflict detector’s complexity and overhead. Never-

theless, the Safety property described in §4.1 guarantees that an MM exception is

thrown before the effects of a non-SC execution can reach any external component

via a system call.

4.2.5 Enforcing the drfx Model

The key idea behind enforcing the drfx model is to partition a program into

regions. Each region is a single-entry, multiple-exit portion of the program. Both

the hardware and the compiler agree on the exact definition of these regions and

perform program transformations only within a region. Each synchronization

operation and each system call is required to be in its own region. For instance,

one possible regionization for the program in Figure 4.2 would make each of {B,C}

and {F,G} a region and put each lock and unlock operation in its own region.

During execution, the drfx runtime signals an MM exception if a conflict is

detected between regions that are concurrently executing in different processors.

We define two regions to conflict if there exists any instruction in one region that
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conflicts with any instruction in the other region. More precisely, we only need

to signal an MM exception if the second of the two conflicting accesses executes

before the first region completes. In the interleaving of Figure 4.3(b), no regions

execute concurrently and thus the drfx runtime will not throw an exception,

even though the execution contains a data race. On the other hand, in the

interleaving shown in Figure 4.3(a), the conflicting regions {B,C} and {F,G} do

execute concurrently, so an MM exception will be thrown.

4.2.6 From Region Conflicts to drfx

The Venn diagram in Figure 4.4 illustrates the intuition for why the compiler

and hardware co-design overviewed above satisfies the drfx properties. If a

program execution is data-race-free (DRF), then concurrent regions will never

conflict during that execution, i.e., the execution is region-conflict free (RCF).

Since synchronization operations are in their own regions, this property holds

even in the presence of intra-region compiler and hardware optimizations, as long

as the optimizations do not introduce speculative reads or writes. If an execution

is RCF, then it is also region-serializable (RS): it is equivalent to an execution in

which all regions execute in some global sequential order. That property in turn

implies the execution is SC with respect to the original program. This establishes

the DRF property of the drfx model.

On the other hand, suppose that an execution is not SC. Then as the Venn

diagram shows, that execution is also not region-conflict free, so an MM exception

will be signaled. Again this property holds even in the presence of non-speculative

intra-region optimizations. Therefore the Soundness property of the drfx model

is enforced.

In general, each of the sets illustrated in the Venn diagram is distinct: there
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exists some element in each set that is not in any subset. In some sense this

fact implies that the notion of region-conflict detection is just right to satisfy the

two main drfx properties. On the one hand, it is possible for a racy program

execution to nonetheless be region-conflict free. In that case the execution is

guaranteed to be SC, so there is no need to signal an MM exception. This

situation was described above for the example in Figure 4.3(b). On the other

hand, it is possible for an SC execution to have a concurrent region conflict and

therefore trigger an MM exception. Although the execution is SC, it is nonetheless

guaranteed to be racy. For example, consider again the program in Figure 4.2.

Any execution in which instructions B and C are not reordered will be SC, but

with the regionization described earlier some of these executions will trigger an

MM exception.

4.2.7 The Compiler and the Hardware Contract

The compiler and hardware are allowed to perform any transformation within a

region that is consistent with the single-thread semantics of the region, with one

limitation: the set of memory locations read (written) by a region in the original

program should be a superset of those read (written) by the compiled version of

the region. This constraint ensures that an optimization cannot introduce a data

race in an originally race-free program.

Many traditional compiler optimizations (constant propagation, common subex-

pression elimination, dead-code elimination, etc.) satisfy the constraints above

and are thus allowed by the drfx model. Figure 4.5 describes an optimization

that is disallowed by the drfx model. Figure 4.5(a) shows a loop that accumu-

lates the result of some computation in the sum variable. A transformation that

allocates a register for this variable is shown in Figure 4.5(b). The variable sum
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for(i=0; i<n; i++)

sum += a[i];

reg = sum;

for(i=0; i<n; i++)

reg += a[i];

sum = reg;

if(n>0) {

reg = sum;

for(i=0; i<n; i++)

reg += a[i];

sum = reg;

}

(a) (b) (c)

Figure 4.5: A transformation that introduces a read and a write.

is read into a register at the beginning of the loop and written back at the end

of the loop. However, on code paths in which the loop is never entered, this

transformation introduces a spurious read and write of sum. While such behavior

is harmless for sequential programs, it can introduce a race with another thread

modifying sum. One way to avoid this behavior is to explicitly check that the

loop is executed at least once, as shown in Figure 4.5(c). The drfx model allows

the transformation with this modification, although the current compiler imple-

mentation simply disables the transformation. In spite of this, the experimental

results in §4.5 indicate that the performance reduction due to lost compiler opti-

mizations is reasonable, on average 8% on the evaluated benchmarks.

In addition to obeying the requirement above, the hardware is also responsi-

ble for detecting conflicts on concurrently executing regions. While performing

conflict detection in software would avoid the need for special-purpose hardware,

conflict detection in software can lead to unacceptable runtime overhead due to

the need for extra computation on each memory access. On the other hand,

performing conflict detection in hardware is efficient and lightweight. Sun’s TM

support in the Rock processor has demonstrated that conflict detection is feasible

in hardware [DLM09]. drfx hardware can actually be simpler than TM hard-

ware, since speculation support is not needed. Further, unlike in a TM system,
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the drfx compiler can partition a program into regions of bounded size, thereby

further reducing hardware complexity by safely allowing conflict detection to be

performed with fixed-size hardware resources.

Having the compiler bound the size of regions is essential for efficient hardware

detection, but the fences inserted by the compiler for the purposes of bounding

should not unnecessarily disallow hardware optimizations. As such, the drfx

implementation supports two types of fences: hard fences that surround synchro-

nization operations and system calls, and soft fences that are inserted only for the

purposes of bounding region size. Both the implementation and the formalism

account for the fact that the hardware can perform certain optimizations across

soft fences that it must not perform across hard fences.

4.3 Formal Description of drfx

This section describes the formalization of the drfx model. Preliminary notation

and definitions are introduced in §4.3.1. A formal set of requirements sufficient

to establish the drfx guarantees are broken down into the responsibilities of the

compiler, and those of the execution environment, which in the implementation

described in this chapter is hardware, but which could potentially be a soft-

ware interpreter or some combination of hardware and software. §4.3.2 formally

presents the requirements that drfx places on the compiler and establishes two

key lemmas relating a source program to the output of a drfx-compliant com-

piler. In §4.3.3 the responsibilities of the execution environment are formalized

and two important properties of a drfx-compliant execution are established. Fi-

nally, §4.3.4 uses these results to establish the properties of the drfx model. Full

proofs are omitted here, but the interested reader can find them in prior technical

reports [MSM09, SMN11].
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4.3.1 Preliminary Definitions

A program P is a set of threads T1, T2, · · · , Tn where each thread is a sequence

of deterministic instructions including:

• regular loads and stores (regular accesses)

• atomic loads and stores (atomic operations)

• branches and arithmetic operations on registers

• a special end instruction indicating the end of a thread’s execution

• fence instructions (a hard fence hfence and a soft fence sfence) used

only in compiled programs

Note that we assume the source language and target language are the same

(actually the source language is a subset of the target language), so both source

programs and compiled programs are represented in the same way. An argument

extending the results to a high-level source language will be presented later.

We assume the semantics of our language is given in terms of how an instruc-

tion changes a machine state M that contains shared global memory locations as

well as a separate set of local registers for each thread. This semantics dictates

how a thread’s abstract execution proceeds. We write (M, I) −→T (M̂, Î) to

mean that executing instruction I in machine state M results in machine state

M̂ with Î poised to execute next in thread T . We write (M, I) −→∗
T
(M̂, Î) to in-

dicate several steps of execution (transitive closure of above). Fence instructions

behave as no-ops: (M, hfence) −→T (M, I) where I is the next instruction in

program order in T , and similarly for sfence.
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We extend the notion of a thread’s abstract execution to a program by having

execution proceed by choosing any thread and executing a single instruction from

that thread. We write:

(M, {I1, · · · , Ij, · · · , In}) −→P (M̂, {I1, · · · , Îj, · · · , In})

if and only if (M, Ij) −→Tj
(M̂, Îj). We call one or more of these steps a (partial)

abstract sequential execution:

(M, {I1, · · · , In}) −→∗
P
(M̂, {Î1, · · · , În}).

We define a behavior to be a pair of machine states and denote it by Mstart  

Mend. Intuitively, we use behaviors to describe a starting machine state and a

machine state that is arrived at after executing some or all of a program. The

standard notion of sequential consistency can be phrased in terms of behaviors

and abstract sequential executions.

Definition 4.1. M0  M is a sequentially consistent behavior for a program

P , or M0  M is SC for P , if there exists an abstract sequential execution

(M0, {I10, · · · , In0}) −→∗
P
(M, {end, · · · , end}) where each Ii0 is the first instruc-

tion in thread Ti. We say that M0  M is a sequentially consistent partial behav-

ior for P if there is a partial abstract sequential execution (M0, {I10, · · · , In0}) −→∗
P

(M, {I1, · · · , In}) where each Ii0 is the first instruction in thread Ti.

We say that two memory access instructions u and v conflict if they access the

same memory location, at least one is a write, and at least one is not an atomic

operation. We say that a program has a data race if it has a partial abstract

sequential execution where two conflicting accesses are ready to execute. More

formally:

Definition 4.2. A program P has a data race if for some M0, u, v,

(M0, {I10, · · · , In0}) −→∗
P
(M, {I1, · · · , u, · · · , v, · · · , In})
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where u and v are conflicting accesses. We shall say that such a partial abstract

sequential execution exhibits a data race.

The above definition for a racy program and execution is simply a restatement

of Definitions 2.2 and 2.3 adapted to this formal setting which has a well-defined

notion of an abstract execution.

4.3.2 drfx-compliant Compilation

A partition Q of a thread T is a set of disjoint, contiguous subsequences of T

that cover T . Call each of these subsequences a region. Regions will be denoted

by the metavariable R.

Definition 4.3. A partition Q is valid if:

• each atomic operation and end operation is in its own region

• each region has a single entry point (i.e. every branch has a target that is

either in the same region or is the first instruction in another region)

We extend the notion of abstract execution of a thread from instructions to

regions as follows. We write (M, R) −→T (M̂, R̂) if (M, I1) −→T · · · −→T (M̂, In)

where

• I1 is the first instruction in R,

• Ik 6= I1 for each 2 ≤ k < n,

• I2, · · · , In−1 ∈ R, and

• In is the first instruction in region R̂ (it is possible that R̂ = R).
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For threads with valid partitions, (M, R) −→T (M̂, R̂) intuitively means that

beginning with memory in state M , executing the instructions in R in isolation

will result in memory having state M̂ and T ready to execute the first instruction

in region R̂. Extending this to programs, an abstract region-sequential execution

is one where a scheduler arbitrarily chooses a thread and executes a single region

from that thread. We define region-serializable behavior for a program P in terms

of an abstract region-sequential execution.

Definition 4.4. We say M0  M is region-serializable behavior, or RS, for

P with respect to thread partitions Qi if there is an abstract region-sequential

execution (M0, {R10, · · · , Rn0}) −→∗
P
(M, {R1, · · · , Rn}) where each Ri0 is the

first region given by partition Qi for thread Ti.

Now let us introduce notation for the read and write sets for a region given

a starting memory state. read(M, R) is the set of locations read when executing

R in isolation starting from memory state M . write(M, R) is defined similarly.

Note that these are sets and not sequences.

We can now describe the requirements the drfx model places on a compiler.

Consider a compilation P y P ′ where each thread Ti in P is partitioned into

some number, mi, of regions by Qi. So we have,

P = {T1, · · · , Tn} = {R11 · · · R1m1 , · · · , Rn1 · · · Rnmn
}.

Furthermore, the compiled program has the same number of threads and each

is partitioned by some Q′
i into the same number of regions as in the original

program. So we have,

P ′ = {R′
11

· · · R′
1m1

, · · · , R′
n1 · · · R′

nmn
}.

We consider such a compilation to be drfx-compliant if:

(C1) The partitions Qi and Q′
i are valid.
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(C2) For all i, j, M , we have (M, Rij) −→Ti
(M̂, Rik) ⇐⇒ (M, R′

ij) −→T ′
i
(M̂, R′

ik)

(C3) For all i, j, M , we have read(M, Rij) ⊇ read(M, R′
ij) and write(M, Rij) ⊇

write(M, R′
ij)

(C4) Each region R′
ij in the compiled program contains exactly one fence opera-

tion and it is the first instruction. Each of the fences surrounding an atomic

operation must be an hfence. The fence preceding an end operation also

must be an hfence.

Intuitively, the above definition of a drfx-compliant compilation requires

that a drfx-compliant compiler choose valid partitions for a program’s threads,

perform optimizations only within regions, maintain the read and write sets of

each region, and introduce hfence and sfence instructions to demarcate region

boundaries. These fence instructions communicate the thread partitions chosen

by a drfx-compliant compiler to the execution environment. In the next section,

we will refer to these as the fence-induced thread partitions of a program.

We now state the two key lemmas we have proven for drfx-compliant com-

pilations.

Lemma 4.1. If P y P ′ is a drfx-compliant compilation and M0  M is a

region-serializable behavior for P ′ with respect to its fence-induced thread parti-

tions, then M0  M is a (partial) sequentially consistent behavior for P .

Proof Sketch. We can transform an abstract region-sequential execution of P ′

to an abstract region-sequential execution of P due to (C2). Clearly an abstract

region-sequential execution qualifies as an abstract sequential execution. �

Lemma 4.2. If P y P ′ is a drfx-compliant compilation and P ′ has a data race,

then P has a data race.
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Proof Sketch. Essentially, we take a partial abstract sequential execution of P ′

that exhibits a simultaneous data race, truncate it to the earliest happened-before

data race, and reorder the truncated trace while maintaining program dependen-

cies to achieve a trace of P ′ with a region-sequential prefix and a suffix containing

a simultaneous race. The ability to perform this reordering and achieve a region-

sequential prefix relies critically on (C1) which insists that atomic accesses are

in their own region. We can then use (C2) and (C3) to construct an abstract

sequential execution of P exhibiting a data race from the racy execution of P ′.

�

Full proofs for the lemmas in this section can be found in [MSM09].

4.3.3 drfx-compliant Execution

We now formally specify the requirements that the drfx model places on a ma-

chine executing a program. We will represent a (partial) relaxed execution, E,

of a program as a 5-tuple E = (M0, T , eo, rcs, err). Each of the components is

described below:

• M0 is the initial machine state

• T is a set of individual thread traces (T = {τ1, · · · , τn}). Each thread trace

τi contain instructions in the order specified by the program for thread i

without gaps. We call this order to (it totally orders instructions within a

thread and is a partial order on all instructions in the program execution).

Each thread trace is divided into dynamic regions (notated using metavari-

able ρ), with all instructions between two fence instructions in the trace

belonging to one dynamic region. This is referred to as the fence-induced

partition. We call the fence-induced partition valid if all atomic operations
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are immediately surrounded by hfence instructions. Although strictly

speaking to is a relation on instructions, we will also use it to order dy-

namic regions within a thread trace.

• eo is a relation that specifies a partial order on memory accesses. If two

operations u and v access the same memory location and at least one of

them is a write, then either u <eo v or v <eo u. Furthermore, no two

operations that do not access the same memory location are related by eo.

eo uniquely defines the write whose value each read sees (i.e., the most

recent write to the same location in eo). Note that eo ∪ to may contain

cycles, so the relaxed orderings allowed by optimizations such as out-of-

order execution and store buffers are captured by eo rather than by the

thread traces.

• rcs is a map from dynamic regions to a conflict detection state in the set

{uncommitted, lagging, committed}. Intuitively, rcs models a conflict

detection mechanism which works on the fence demarcated regions and

moves them through the three states as they execute, from uncommitted,

possibly to lagging, and finally to committed when detection successfully

completes with no region conflict found. The lagging regions will allow the

model to capture a conflict detection mechanism that distinguishes between

hfences and sfences and commits certain regions out of order.

• err is either ∅ or a single element of eo, u <eo v. Intuitively, a non-empty

err will indicate a conflicting pair of accesses in concurrently executing

regions which triggers an MM exception.

We say that an execution E = (M0, T , eo, rcs, err) is well-formed for a program

P if all of the following conditions are met:
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(WF1) Each thread trace τi represents a valid sequential execution of thread

i in P given that each read sees the value written by the (unique)

closest preceding write in eo.

(WF2) Let d be the partial order that captures intra-thread data and control

dependencies. eo is consistent with d and eo|wr ∪ d is acyclic, where

eo|wr is the subset of eo containing only write-to-read (i.e. read-after-

write, or true) dependencies (u <eo|wr v ⇐⇒ u <eo v ∧ u a write ∧

v a read).

(WF3) A committed or lagging region never follows an uncommitted re-

gion in a thread trace. That is, if there is some ρ such that rcs(ρ) =

uncommitted, then for all ρ′ such that ρ <to ρ′, rcs(ρ′) = uncommitted.

(WF4) A lagging region always has some committed region following it in

its thread trace. That is, for all ρ such that rcs(ρ) = lagging, there

exists some ρ′ such that ρ <to ρ′ and rcs(ρ′) = committed.

(WF5) All regions preceding an hfence in a thread trace are committed.

No thread trace contains an atomic access without an hfence imme-

diately following it.

Intuitively, conditions (WF1) and (WF2) simply ensure that our machine cor-

rectly executes instructions and obeys intra-thread data and control dependen-

cies. In particular, condition (WF2) prevents a machine from speculatively writ-

ing a value and making it visible to other threads before a read on which the

write depends completes.

Conditions (WF3) and (WF4) establish some basic conditions that we assume

for a conflict detection mechanism. Multiple uncommitted regions may be in-

flight in a thread simultaneously. Regions may commit out of order, but when
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this happens, prior uncommitted regions in the same thread must be classified

as lagging regions. Condition (WF5) establishes that hfence instructions force

all prior regions to commit. Furthermore, atomic operations may not complete

(i.e., become visible to other threads) until their region is committed and the

succeeding hfence is executed.

We also define an operator on a well-formed, partial relaxed execution that

truncates incomplete thread traces to include only committed and lagging re-

gions. Note that the well-formedness conditions above ensure that all uncommitted

regions in a thread trace occur consecutively at the end. The truncation operator

drops instructions from these uncommitted regions from the end of each trace,

removes pairs from eo if at least one operation in the pair has been truncated

from its thread trace, removes truncated regions from rcs , and sets err to ∅.

We notate this as follows:

⌊(M0, T , eo, rcs, err)⌋ = (M0, ⌊T ⌋, ⌊eo⌋, ⌊rcs⌋, ∅)

We call a well-formed execution E = (M0, T , eo, rcs, err) drfx-compliant if

it satisfies all of the following conditions, which capture a sufficient condition for

conflict detection to satisfy the drfx memory model:

(E1) Given accesses u ∈ ρu and v ∈ ρv to the same location from different

threads, at least one of which is a write, if u <eo v and rcs(ρu) 6=

uncommitted and rcs(ρv) 6= uncommitted, then there do not exist

v′ ∈ ρ′
v and u′ ∈ ρ′

u such that ρu′ ≤to ρu and ρv ≤to ρv′ and v′ <eo u′.

[The set of committed and lagging regions have an order consistent

with eo.]

(E2) There do not exist a read r ∈ ρr and a write w ∈ ρw such that rcs(ρr) 6=

uncommitted and rcs(ρw) = uncommitted and w <eo r. [Reads in
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committed and lagging regions do not see writes in uncommitted

regions.]

(E3) There do not exist a read r ∈ ρr and a write w ∈ ρw such that rcs(ρr) =

uncommitted and rcs(ρw) = committed and r <eo w. [ Writes from

committed regions are visible to reads in uncommitted regions. ]

(E4) If err = u <eo v, then u ∈ ρu and v ∈ ρv conflict, u and v are from

different threads, neither ρu or ρv is committed, and at least one of

these regions is uncommitted.

Intuitively, the conditions ensure a conflict detection mechanism in which

committed regions are guaranteed not to contain accesses that participate in a

race that violates region-serializability, while lagging regions are guaranteed to

not participate in a race that violates region-serializability with accesses in other

lagging regions or committed regions, but may participate in a violating race

with an access in an uncommitted region. Condition (E1) ensures that any race

that would cause committed and lagging regions not to be serializable is caught.

Condition (E2) requires that all reads in a region must complete before it or any

subsequent region commits. Condition (E3) requires that all writes in a region

must complete and be visible to other threads before it commits.

A drfx-compliant execution that has err = ∅ is called exception-free. A

drfx-compliant execution where err 6= ∅ is called exceptional.

The following lemmas establish two key results for drfx-compliant executions.

Lemma 4.3. Given a well-formed, drfx-compliant execution E of a program P

with valid fence-induced thread partitions, ⌊E⌋ exhibits region-serializable behav-

ior w.r.t. to the fence-induced partitions.
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Proof Sketch. This follows quickly from (E1) and (E2). Condition (E2) estab-

lishes that any value read by an instruction in ⌊E⌋ was written by an instruction

that is also in ⌊E⌋. Furthermore, Condition (E1) establishes an order on the

regions in ⌊E⌋ that is consistent with the way that eo orders conflicting ac-

cesses within those regions. This ensures that the lifting of the eo relation to

dynamic regions is acyclic, which implies that the execution is serializable w.r.t.

the regions. �

Lemma 4.4. If there is a well-formed, exceptional, drfx-compliant execution of

a program P with valid fence-induced thread partitions, then P has a data race.

Proof Sketch. From Lemma 4.3 we know that the execution has a region-

serializable prefix. We then use this to construct an abstract sequential execution

of the prefix. Because the execution is exceptional, condition (E4) guarantees

that we have conflicting accesses neither of which is contained in a committed

region, and at least one of which is from an uncommitted region. We can

extend the execution of the prefix to an execution demonstrating a happened-

before data race. Essentially, for a program with valid fence-induced thread

partitions, a happened-before relation between operations on different threads

implies the existence of an hfence following one operation on its thread and

preceding the other on its thread. Since neither of the conflicting accesses is from

a committed region, and condition (WF5) requires regions preceding an hfence

to be committed, we know the accesses cannot be related by happened-before.

2 �

2In fact, there are exceptional, drfx-compliant executions where the conflict detected is not
reachable through an abstract sequential execution, but this can only happen as the result of
a previous data race which is reachable.
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Full proofs for the previous two lemmas can be found in [SMN11]. Rather

than starting with the conditions for well-formed, drfx-compliant execution, the

proofs in the cited techical report are done in the context of the particular ar-

chitectural design described in §4.4.2. Conditions (E1) through (E4) capture the

supporting lemmas from the technical report that are used to establish the results

above. 3

4.3.4 drfx Guarantees

Putting together the lemmas from Sections 4.3.2 and 4.3.3, we can prove the

following theorem, which ensures that a drfx-compliant compiler along with a

drfx-compliant execution environment enforce the DRF and Soundness proper-

ties. We call an execution complete if either it is exceptional (contains a non-null

err component), or all the thread traces in the execution terminate in an end

operation.

Theorem 4.1. If P y P ′ is a drfx-compliant compilation, and E is a complete

drfx-compliant execution of P ′ with behavior M0  M , then either:

• E is exception-free and M0  M is sequentially consistent behavior for P

or

• E is exceptional and P contains a data race.

The arguments presented above were developed entirely in the context of a

low-level machine language. The results can however be extended to a high-level

source language in the following way. Imagine a “canonical compiler” that trans-

lates each high-level statement into a series of low-level operations that read the

3Note that an earlier technical report [MSM09] establishes similar results under a different
set of conditions that were too restrictive for the eventual hardware design.
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operands from memory into registers, perform appropriate arithmetic operations

on the registers, and then store results back to memory. Any optimizations are

then applied after this canonical compiler is run. We can extend the results to

the high-level language simply by requiring that the compiler choose a region

partition that does not split up instructions that came from the same high-level

source language expression or statement.

The definition of a drfx-compliant execution and Lemma 4.3 establish that

all drfx-compliant executions are region-serializable up to the latest committed

region in each thread. Combining this fact with Lemma 4.1, we can see that,

restricted to committed and lagging regions, a drfx-compliant execution is SC

with respect to the original source program. Note that an hfence operation

cannot execute until all previous regions in its thread are committed (condi-

tion (WF5)). Therefore, requiring that system calls are preceded by hfence

instructions and only use thread-local data ensures that the behavior they ex-

hibit would have been achievable in an SC execution of the original program.4

This establishes the Safety property of the drfx model.

4.4 Compiler and Hardware Design

There are several possible compiler and hardware designs that meet the require-

ments necessary to ensure the drfx properties as described in the previous sec-

tion. In this section one concrete approach is described. It is evaluated in the next

section. The approach is based on two key ideas crucial for a simple hardware

design:

4Condition (E2) is also essential in establishing the Safety property since it ensures that no
read preceding a system call sees a write from an uncommitted region which might not be
part of an SC execution.
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• Bounded regions: First, the compiler bounds the size of each region in

terms of number of memory accesses it can perform dynamically using a

conservative static analysis. Bounding ensures that the hardware can per-

form conflict detection with fixed-size data structures. Detecting conflicts

with unbounded regions in hardware would require complex mechanisms,

such as falling back to software on resource overflow, that are likely to be

inefficient.

• Soft fences: When splitting regions to guarantee boundedness, the com-

piler inserts a soft fence. Soft fences are distinguished from the fences used

to demarcate synchronization operations and system calls which are called

hard fences. While hard fences are necessary to respect the semantics of

synchronization accesses and guarantee the properties of drfx, soft fences

merely convey to the hardware the region boundaries across which the com-

piler did not optimize. These smaller, soft-fence-delimited regions ensure

that the hardware can soundly perform conflict detection with fixed-size

resources. But, it is in fact safe for the hardware to reorder instructions

across soft fences whenever hardware resources are available, essentially

erasing any hardware performance penalty due to the use of bounded-size

regions.

4.4.1 Compiler Design

A drfx-compliant compiler was built by modifying the LLVM compiler [LA04].

As specified by the requirements (C1) through (C4) in the previous section, to

ensure the drfx properties the compiler must simply partition the program into

valid regions, optimize only within regions, avoid inserting speculative memory

accesses, and insert fences at region boundaries.
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4.4.1.1 Inserting Hard Fences for DRF and Safety

A hard fence is similar to a traditional fence instruction. The hardware ensures

that prior instructions have committed before allowing subsequent instructions to

execute and the compiler is disallowed from optimizing across them. To guarantee

SC for race-free programs, the compiler must insert a hard fence before and after

each synchronization access. On some architectures, the synchronization access

itself can be translated to an instruction that has hard-fence semantics (e.g., the

atomic xchg instruction in AMD64 and Intel64 [BA08]), obviating the need for

additional fence instructions. In the current implementation, the compiler treats

all calls to the pthread library and lock-prefixed memory operations as “atomic”

accesses. In addition, since the LLVM compiler does not support the atomic

keyword proposed in the new C++ standard, all volatile variables are treated

as atomic. All other memory operations are treated as data accesses.

To guarantee drfx’s Safety property, a drfx-compliant compiler should also

insert hard fences for each system call invocation, one before entering the kernel

mode and another after exiting the kernel mode. Any state that could be read

by the system call should first be copied into a thread-local data structure before

the first hard fence is executed. This approach ensures that the external system

can observe only portions of the execution state that are reachable in some SC

execution. Transforming system calls in this way is not implemented in the

compiler used for the experiments in §4.5.

To insert a hard fence, the compiler uses the llvm.memory.barrier intrinsic

in LLVM with all ordering restrictions enabled. This ensures that the LLVM

compiler passes do not reorder memory operations across the fence. LLVM’s

code generator translates this instruction to an mfence instruction in x86 which

restricts hardware optimizations across the fence.
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4.4.1.2 Inserting Soft Fences to Bound Regions

In addition to hard fences, the compiler inserts soft fences to bound the number of

memory operations in any region. Soft fences are inserted using a newly created

intrinsic instruction in LLVM that is compiled to a special x86 no-op instruction

which can be recognized by the drfx hardware simulator as a soft fence. The

compiler employs a simple and conservative static analysis to bound the number

of memory operations in a region. While overly small regions do limit the scope

of compiler optimizations, experiments show that the performance loss due to

this limitation is about 1.7% on average [MSM10]. After inserting all the hard

fences described earlier, the compiler performs function inlining. Soft fences are

the inserted in the inlined code. A soft fence is conservatively inserted before each

function call and return, and before each loop back-edge. Finally, the compiler

inserts additional soft fences in a function body as necessary to bound region

sizes. The compiler performs a conservative static analysis to ensure that no

region contains more than R memory operations, thereby bounding the number

of bytes that can be accessed by any region. The constant R is determined based

on the size of hardware buffers provisioned for conflict detection.

The above algorithm prevents compiler optimizations across loop iterations,

since a soft fence is inserted at each back-edge. However, it would be possible to

apply a transformation similar to loop tiling [Wol89] which would have the effect

of placing a soft fence only once every R/L iterations, where L is the maximum

number of memory operations in a single loop iteration. Restructuring loops in

this way would allow the compiler to safely perform compiler optimizations across

each block of R/L iterations.
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4.4.1.3 Compiler Optimization

After region boundaries have been determined, the compiler may perform its op-

timizations. By requirements (C2) and (C3), any sequentially valid optimization

is allowed within a region, as long as it does not introduce any speculative reads or

writes since they can cause false conflicts. As such, in the current implementation,

all speculative optimizations in LLVM are explicitly disabled.5 Note, however,

that there are several useful speculative optimizations that have simple variants

that would be allowed by the drfx model. For example, instead of inserting a

speculative read, the compiler could insert a special prefetch instruction which

the hardware would not track for purposes of conflict detection. The Itanium ISA

has support for such speculation [TBB01] in order to hide the memory latency of

reads. Also, as shown earlier in Figure 4.5, loop-invariant code motion is allowed

by the drfx model, as long as the hoisted reads and writes are guarded to ensure

that the loop body will be executed at least once.

4.4.2 Hardware Design and Implementation

This section discusses the proposed drfx processor architecture. A lazy conflict

detection scheme using bloom filter signatures is described, as well as several

optimizations that allow efficient execution in spite of the small, bounded regions

created by the drfx compiler.
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Figure 4.6: Architecture support for drfx (shown in gray).

4.4.2.1 Overview

To satisfy drfx properties, the runtime has to detect a conflict when region-

serializability may be violated due to a data race and raise a memory model

exception (§4.2.6). Figure 4.6 presents an overview of a drfx hardware design

which supports this conflict detection. Additions to the baseline DRF0 hardware

are shaded in gray. The state of several hardware structures at some instant of

time during an execution of a sample program is also shown.

Rollback is a necessary requirement of hardware transactional memory sys-

tems. As such, they can easily tolerate false positives in their conflict detection

mechanism by simply rolling back and re-executing. This allows them to use

5The LLVM implementation has functions called isSafeToSpeculativelyExecute,
isSafeToLoadUnconditionally and isSafeToMove, which we modified to return false for
both loads and stores.
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cache-line granularity conflict detection which may report false races. drfx, on

the other hand, does not require a rollback mechanism. But, because it termi-

nates an execution upon detecting a race, false race reports cannot be tolerated.

As such, drfx performs byte-level conflict detection. Performing precise, eager

byte-level conflict detection complicates the coherence protocol and cache archi-

tecture [LCS10]. For instance, such a scheme would require the hardware to

maintain byte-level access state for every cache block, maintain the access state

even after a cache block migrates from one processor to another, and clear the

access state in remote processors when a region commits.

Instead, the drfx hardware employs lazy conflict detection [HCW04]. Each

processor core has a region buffer which stores the physical addresses of memory

accesses executed in a region. An entry is created in the region buffer when a

region executes a memory access. A load completes its execution when it com-

mits from the reorder buffer, while a store completes its execution when it retires

from the store buffer. When all the memory accesses in a region have completed

their execution, the processor broadcasts the address set for the region to other

processors for conflict checks. Once the requesting processor has received ac-

knowledgments from all other processors indicating lack of conflicts, it commits

the region and reclaims the region buffer entries. The communication and con-

flict check overhead is reduced by using bloom filter signatures to represent sets

of addresses [CTT06]. A signature buffer is used to store the read and write

signatures for all the in-flight regions in a processor core.

The region buffer has to be at least as large as the maximum number of

instructions allowed to be executed in a soft-fenced region created by the drfx

compiler. The static analysis used by the drfx compiler to guarantee this bound

is necessarily conservative and may create regions that are much smaller than the
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desired bound. Frequent soft-fences leads to frequent conflict checks. This cost

is reduced by coalescing adjacent regions separated by a soft fence into a single

region at runtime when there is sufficient space available in the region buffer.

Supporting this optimization requires using a region buffer somewhat larger than

the maximum possible region-size guaranteed by the compiler.

When executing a hard fence, the drfx hardware stalls the execution of all

future memory accesses until all accesses preceding the fence have completed.

This helps guarantee correct behavior of synchronization operations and ensures

that any conflicts that are detected indeed correspond to a data race. But it also

prevents full utilization of processor resources since instruction and memory level

parallelism cannot be exploited across the fence. If the more frequently occurring

soft fences behaved the same as hard fences, these lost opportunities to exploit

parallelism would result in significant performance overhead. Fortunately, this

is unnecessary since soft fences do not indicate the presence of synchronization.

In fact, memory accesses from a region can be allowed to execute even if earlier

regions that end in soft fences have not committed. In addition, regions sepa-

rated by a soft fence can be committed out of order. The formal proofs outlined

in Section 4.3 admit these optimizations and establish that the drfx runtime

requirements are still satisfied.

4.4.2.2 Signature-based Lazy Conflict Detection

Let us assume that a processor treats soft fences similar to hard fences, an as-

sumption that we will relax later in the discussion. drfx hardware employs lazy

conflict detection to detect when region-serializability could have been violated

due to a data-race.

Each processor core has a region buffer. A region buffer entry stores the
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physical address of a memory access in a region. The drfx compiler bounds the

size of a soft-fenced region to defined bound B, which determines the minimum

size that a processor needs to provision for a region buffer.

Similar to DRF0 hardware, the memory accesses within a region can execute

out-of-order, and in the case of stores, retire from a store buffer out-of-order. An

entry in the region buffer is created for a memory access when it is in the decode

stage of the pipeline. Its effective address is eventually written to the region

buffer once it is resolved, but before issuing the memory access.

Once all the memory accesses of a region have committed from the re-order

buffer (ROB), and stores are retired from the store buffer, the corresponding

processor broadcasts the address set to the other processors to perform conflict

checks. On receiving a conflict check request, a processor detects a conflict if

the addresses in its region buffer intersect with the address set received. If the

intersection is empty, an acknowledgment is sent to the requester. On receiving

acknowledgments from all the other processors, a processor commits a region by

deleting its address entries from the region buffer.

Broadcasting addresses accessed by every region and checking their member-

ship in every processor’s region buffer is clearly expensive. To reduce this cost,

bloom filter signatures [CTT06] can be used. Memory addresses accessed by a

region are represented using a read and a write signature. Signatures for the

in-flight regions are stored in the signature buffer (more than one region could be

in-flight due to the out-of-order execution optimizations discussed later in Sec-

tion 4.4.2.5). To perform conflict checks for a region, a processor first broadcasts

only its signatures. Each processor performs AND operations over the incoming

signatures with the contents in its signature buffer. On detecting a potential con-

flict, a NACK is sent to the requester. On receiving a NACK, a processor sends the
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full address set for the region so that precise conflict detection can be performed.

The size of signatures needs to be large enough so that false conflicts are

rare, avoiding frequent transmission of full address sets. On the other hand,

large signatures could incur significant communication overhead. Experimental

results show that the dynamic region size is relatively small (36 instructions, on

average). But, since many regions can be in flight in a processor at once, the

signature may be compared with many remote regions, increasing the probabil-

ity of getting a false conflict. To address this problem, large signatures (1024

bits) are used, but they are compressed before transmission to reduce communi-

cation overhead. Because many regions have small access sets, their signatures

are effectively compressed using a simple, efficient run-length encoding scheme.

This strategy resulted in very high compression ratios which significantly reduced

communication overhead.

Note that the conflict detection architecture does not require additional state

to be maintained in the cache, nor does it require changes to the coherence pro-

tocol as the drfx conflict check messages are independent of coherence messages.

4.4.2.3 Concurrent Region Conflict Check and Region Execution

When a processor P receives a conflict check request for R′, it need not stall the

execution of its current region R while it performs the conflict check. A conflict

check can be performed in parallel with the execution of a local region. The

intuition here is that any memory address that gets resolved for R during the

conflict check can be shown to have executed after the memory accesses in R′.

Thus, we can order R′ before R in the region serialization of the execution.

However, care must be taken to not raise a false conflict over a speculative

memory access. The region buffer entry and signature buffer is updated once
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the address for a memory access is resolved. It is possible that a branch before

the memory access is mispredicted, and therefore there is a risk that the mem-

ory access could get aborted in future. To avoid raising false exceptions, once a

processor detects a conflict, it delays the exception until the conflicting memory

access is committed from the ROB. If the memory access gets aborted due to mis-

prediction, then an acknowledgment is sent if there were no other conflicts for the

check. Conflicts involving a memory access following a mispredicted branch were

very infrequent in the experiments, therefore the cost of delaying the response to

a conflict check due to such conflicts is negligible.

The signature for a region is updated when one of its memory access’ address

is resolved. When a memory access is aborted due to a branch misprediction,

signatures for its region are not updated. This could result in additional false

positives, but the performance impact is unlikely to be important.

4.4.2.4 Coalescing Soft-Fence-Bounded Regions

The drfx compiler uses a conservative static analysis to estimate the maximum

number of instructions executed in a region. This could result in frequent soft

fences. But a processor can dynamically ignore a soft fence if the preceding soft-

fenced region executed fewer memory accesses than a pre-determined threshold T.

Combining two contiguous soft-fenced regions at runtime does not violate drfx

guarantees, because any conflict detected over the newly constructed larger re-

gion is possible only if there is a race, and ensuring serializability of the larger,

coalesced soft-fenced regions is sufficient to guarantee SC for the original unop-

timized program.

However, the processor needs to ensure that the newly constructed region

does not exceed the size of its region buffer. The design guarantees this by using
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a region buffer that is of size T + B, where B is the compiler specified bound

for a soft-fenced region, and T is the threshold used by a processor to determine

when to ignore a soft fence. Too high a value for the threshold T would result in

large regions at runtime, which might negatively impact performance, because the

probability of aliases in signatures increase. Also, it could undermine out-of-order

commit optimization.

4.4.2.5 Out-of-Order Execution and Commit of Regions

Two important restrictions that need to be obeyed for hard fences can be relaxed

for soft fences, which allows drfx hardware to attain performance close to DRF0.

First, out-of-order execution of soft-fenced regions is allowed. In the case of

a hard fence, before a processor can execute memory accesses from a region, it

has to wait for all the memory accesses in the preceding regions to complete.

This is clearly a requirement for hard fences, since we may detect false conflicts if

memory accesses are allowed to be reordered across hard fences that demarcate

synchronization operations. However, this memory ordering can be relaxed for

soft fences, allowing multiple regions that are not committed to be in-flight simul-

taneously. For example, in Figure 4.7, I7 can be allowed to execute even if regions

R0 and R1 have pending memory accesses in the ROB or the store buffer. If there

is a pending store in a previous region (e.g., I1), its value can be forwarded to a

load in a later region (e.g., I7).

The correctness of the above optimization can be intuitively understood by

observing that executing memory accesses out-of-order only results in more in-

flight accesses that needs to be conflict checked. Therefore, it does not mask any

conflicts that would have been detected before. Also, reordering accesses across

soft fences will not cause any access to be reordered across a synchronization
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operation. As such, any conflict that is detected as a result of this reordering still

implies the presence of a data race.

Second, once a region’s memory accesses are completed, a processor can ini-

tiate conflict checks and commit the region from the region buffer if the check

succeeds. Since the ROB commits instructions in-order, it is guaranteed that

when a region is ready to commit, all the memory accesses from preceding re-

gions would have also committed from the ROB. There could, however, be stores

in the store buffer pending for the earlier regions. As a result, those earlier re-

gions would not yet be ready to commit. In this scenario, it is correct to conflict

check and commit a later region as long as all its accesses have committed from

the ROB and retired from the store buffer. The not yet committed, prior regions

correspond to the lagging regions in the formalism described in §4.3.3. In order

to satisfy conditions (E1) and (E2) for lagging regions, addresses for the uncom-

mitted, previous regions must be included in the conflict check message for the

later region.

I1: x = 1
I2: t1= x
I3: soft-fence
I4: y = 1
I5: soft-fence

I6: z = 1
I7: t4 = x

J1: t2 = y
J2: soft-fence
J3: x = 2
J4: soft-fence

J5: t3 = x

P1 P2

R0

R1

R2

S0

S1

S2

Figure 4.7: An Example Binary Compiled Using drfx Compiler.

For example, in Figure 4.7, say region R0 is waiting for its store I1 to be retired

from the store buffer. In the meantime, I4 has completed and has retired from

the store buffer. Now R1 is ready to commit. The processor can perform conflict

checking for R1 (including the addresses for any uncommitted, prior regions),

and if no conflict is detected, commit by deleting its entries from the region and
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signature buffers (but leaving the entries for uncommitted, prior regions). This

optimization can be intuitively understood by observing that even if a write from

R0 lingering in the store buffer eventually causes a conflict with another access

that has not yet had its address resolved, the successful conflict check of the

addresses in R1 and R0 at the time R1 commits establishes a global order of all

committed and lagging regions in the system at that point. This guarantees SC

behavior up to the latest committed region in each thread.

4.5 Performance Evaluation

This section presents some performance results comparing the performance of

programs compiled and executed under the drfx memory model to those com-

piled and executed under a DRF0 model.

The baseline compiler is the LLVM [LA04] compiler with all optimizations

enabled (similar to compiling with the -O3 flag in gcc) and with fences inserted

before and after each call to a synchronization function and each access to a

volatile variable.6 The drfx compiler is the implementation described in the

previous section: hard fences are inserted before each call to a synchronization

function and each access to a volatile variable, optimizations that perform spec-

ulative reads or writes are disabled, and soft fences are inserted to conservatively

bound region size to 512 memory accesses.

Both the baseline and drfx architectures are simulated using a cycle-accurate,

6The unmodified LLVM compiler using its x86 backend targets hardware obeying the TSO
memory model. The baseline simulated architecture uses a weaker memory model which permits
additional reorderings not allowed by TSO. As such, we insert the additional fences around
synchronization accesses to ensure that the program behaves correctly on the weaker model.
The benchmarks run slightly faster in this baseline, DRF0 configuration than on a simulated
TSO architecture running code compiled with unmodified LLVM.
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Figure 4.8: Slowdown of benchmark programs run under the drfx model compared to a baseline
DRF0 model, broken down in terms of cost of lost compiler optimization and cost of hardware
race detection.

execution driven, Simics based x86_64 simulator called FeS2 [FeS]. The baseline

architecture is a 4-core chip multiprocessor operating at 2GHz. It allows both

loads and stores to execute out of order between fences. The drfx architecture

adds support for soft fences and conflict detection as described in the previous

section, using a region buffer of size 512 (compiler bound) + 32 (to support region

coalescing).

Performance is measured over a subset of the PARSEC [BKS08] and SPLASH-

2 [WOT95] benchmarks. All of these benchmarks are run to completion. For

PARSEC benchmarks (blackscholes, bodytrack, canneal, facesim, streamcluster,

swaptions), the sim-medium input set was used (except for streamcluster, which

used the sim-small input). For SPLASH-2 applications (barnes, water-n2) the

default inputs were used.

The slowdown of the drfx configuration (compiler and hardware) over the

baseline configuration is shown in Figure 4.8. The bar is broken up to display the

cost that can be attributed to compiler optimizations that were not able to be
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Figure 4.9: Effectiveness of Region Coalescing, and Out-Of-Order Region Execution and Com-
mit Optimizations.

performed and the cost of hardware detection to support drfx. The approximate

cost of lost compiler optimizations was calculated by compiling a benchmark pro-

gram using the drfx compiler, converting soft fences to no-ops, and running the

resulting binary on the baseline DRF0 hardware simulator. On average, appli-

cations suffer only an 11% slowdown, 8% of which comes from lost optimization

opportunities in the compiler. As mentioned in the previous section, this drfx

compiler implementation is quite conservative and much of this performance could

likely be recovered if loop optimizations were updated to be drfx-compliant.

Figure 4.9 demonstrates the importance of distinguishing soft fences and im-

plementing the optimizations described in the previous section. When soft fences

are treated like hard fences, the benchmarks slow by more than 2× on average.

Enabling out-of-order execution and region commit for soft-fence-bounded region

and region coalescing reduces this drastically to an 11% overhead.

4.6 Conclusion

The drfx memory model for concurrent programming languages gives program-

mers simple, strong guarantees for all programs. Like prior data-race-free mem-

ory models, drfx guarantees that all executions of a race-free program will be
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sequentially consistent. However, while data-race-free models typically give weak

or no guarantees for racy programs, drfx guarantees that the execution of a racy

program will also be sequentially consistent as long as a memory model exception

is not thrown. In this way, drfx guarantees safety and enables programmers to

easily reason about all programs using the intuitive SC semantics. Furthermore,

the minor restrictions drfx places on compiler optimizations are straightforward,

allowing compiler writers to easily establish the correctness of their optimizations.

drfx capitalizes on the fact that sequentially-valid compiler optimizations

preserve SC as long as they do not interact with concurrent accesses on other

threads. Since performing precise data race detection is impractically slow in

software and complex in hardware, drfx allows the compiler to specify code re-

gions in which optimizations were performed. The hardware can then efficiently

target data race detection only at regions of code that execute concurrently. This

allows drfx-compliant compiler and hardware to cooperate, terminating execu-

tions of racy programs that may violate SC. The formal development establishes

a set of requirements for the compiler and the hardware that are sufficient to

obey the drfx model. The implementation and evaluation indicate that a high-

performance implementation of drfx is possible.
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CHAPTER 5

An SC-preserving Compiler

Like the previous chapter which described drfx, this chapter describes an ap-

proach to simplifying the memory model exposed to the programmer. The ap-

proach is in some ways similar to drfx and in some ways starkly different. While

drfx encompasses both the hardware and programming language level memory

models, the approach described in this chapter divorces the two. The focus is

on avoiding SC-violating optimizations in the compiler while relying on exist-

ing hardware techniques that separately provide a strong memory model. This

essentially allows us to pass the hardware-level memory model through to the

programming language level unchanged. As in drfx, programmers are given

guarantees for both racy programs and data-race-free programs. Also like drfx,

a form of hardware race detection and cooperation between the compiler and

hardware is used. But in this approach, it is primarily used as a performance

optimization as opposed to being central to correctness. The key in this approach

is restricting the compiler to reorder memory accesses only when it can guaran-

tee that those accesses are to thread-local variables, which is accomplished using

a simple, conservative, modular analysis. This can be thought of as statically

finding slices of code which cannot contain racing accesses and thus can be safely

optimized.
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5.1 Introduction

Part of the motivation of drfx, and indeed of the DRF0 memory models before it,

is the commonly accepted assumption that programming languages must relax the

SC semantics of programs in order to allow effective compiler optimizations. The

research presented in this chapter challenges that assumption by demonstrating

an optimizing compiler that retains most of the performance of the generated

code while preserving the SC semantics. A compiler is said to be SC-preserving

if every SC behavior of a generated binary is guaranteed to be an SC behavior of

the source program.

Starting from LLVM [LA04], a state-of-the-art C/C++ compiler, the SC-

preserving compiler was built by modifying each of the optimization passes to

conservatively disallow transformations that might violate SC. Experimental re-

sults (Section 5.3) indicate that the resulting SC-preserving compiler incurs only

3.8% performance overhead on average over the original LLVM compiler with all

optimizations enabled on a set of 30 programs from the SPLASH-2 [WOT95],

PARSEC [BKS08], and SPEC CINT2006 (integer component of SPEC CPU2006

[Hen06]) benchmark suites. Moreover, the maximum overhead incurred by any

of these benchmarks is just over 34%.

5.1.1 An Optimizing SC-Preserving Compiler

The observation that enables this approach is that a large class of optimiza-

tions crucial for performance are either already SC-preserving or can be mod-

ified to preserve SC while retaining much of their effectiveness. Several com-

mon optimizations, including procedure inlining, loop unrolling, and control-flow

simplification, do not change the order of memory operations and are therefore

85



Original Transformed Concurrent
Context

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

⇒
L1: t = X*2;
L2: u = Y;
M3: v = t;

N1: X = 1;
N2: Y = 1;

(a) (b) (c)

Figure 5.1: A compiler transformation from program (a) into (b) that eliminates the common
subexpression X*2. In the presence of a concurrently running thread (c) and an initial state
where all variables are zero, (b) can observe a state u == 1 && v == 0, which is not visible
in (a). Lowercase variables denote local temporaries, while uppercase variables are potentially
shared.

naturally SC-preserving. Other common optimizations, such as common subex-

pression elimination (CSE) and loop-invariant code motion, can have the effect

of reordering memory operations. However, these optimizations can still be per-

formed on accesses to thread-local variables and compiler-generated temporary

variables. The analysis required to distinguish such variables is simple, modular,

and is already implemented by modern compilers such as LLVM. Furthermore,

transformations involving a single shared variable are also SC-preserving under

special cases (Section 5.2).

Consider the instance of CSE in Figure 5.1, where the compiler eliminates the

subexpression X*2. By reusing the value of X read at L1 in L3, this transforma-

tion effectively reorders the second access to X with the access to Y at L2. While

invisible to sequential programs, this reordering can introduce non-SC behaviors

in a concurrent program, as shown in Figure 5.1. However, an SC-preserving

compiler can still perform this transformation as long as at least one of X and Y

is known to be thread-local. If X is thread-local, then its value does not change

between L1 and L3 and so the transformation is SC-preserving. On the other

hand, if Y is thread-local then any SC execution of the transformed program can

be shown to be equivalent to an SC execution of the original program in which

instructions L1 to L3 execute without being interleaved with instructions from
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other threads. By carefully enabling transformations only when they are SC-

preserving, a compiler is able to achieve performance comparable to a traditional

optimizing compiler while retaining the strong SC semantics.

5.1.2 Providing End-to-End Programmer Guarantees

Providing end-to-end SC semantics to the programmer requires executing the

output of an SC-preserving compiler on SC hardware. The empirical results in

this chapter complement recent architecture research [GGH91, RPA97, Hil98,

GF02, CTM07, BMW09] that demonstrates the feasibility of efficient SC hard-

ware. The basic idea behind these proposals is to speculatively reorder memory

operations and recover in the rare case that these reorderings can become visible

to other processors. While such speculation support necessarily increases hard-

ware complexity, hopefully this work on an SC-preserving compiler increases the

incentives for building SC hardware, since in combination they enable end-to-end

SC semantics for programmers at a reasonable cost.

Even in the absence of SC hardware, the techniques described in this chapter

can be used to provide strong semantics to the programmer. For instance, when

compiling to x86 hardware, which supports the relatively-strong total store order

(TSO) memory model [OSS09], a compiler that preserves TSO behavior guaran-

tees TSO semantics at the programming language level even for racy programs.

Data-race-free programs continue to enjoy SC semantics in this scenario. The

result is a language-level memory model that is stronger and simpler than the

current memory-model proposals for C++ [BA08, BOS11] and Java [MPA05],

given that programs may contain data races.
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L1: t = X*2;

L2: u = Y;

L3: v = X*2;

⇒

L1: t = X*2;

L2: u = Y;

M3: v = t;

C3: if(X modified since L1)

L3: v = X*2;

(a) (b)

Figure 5.2: Performing common subexpression elimination while guaranteeing SC. The inter-
ference check at C3 ensures that the value of X has not changed since last read at L1. This
allows the compiler to reuse the value of X*2 computed in L1 without violating SC.

5.1.3 Speculative Optimization For SC-Preservation

While the cost of an SC-preserving compiler is much less than previously as-

sumed, one possible concern is that some applications might be unwilling to pay

this cost, however small. Nevertheless, one should exhaust possible avenues for

improving the performance of SC-preservation, such as more sophisticated static

and dynamic analyses, before exposing a relaxed program semantics to the pro-

grammer.

In this vein, consider the fact that many of the disabled optimizations respon-

sible for lost performance in the SC-preserving compiler involve an eager load.

For instance, the elimination of the expression X*2 in Figure 5.1 can be con-

sidered as performing the load of variable X eagerly at line L1 instead of at L3.

Other eager-load optimizations include constant propagation, copy propagation,

partial-redundancy elimination, global value numbering, and common cases of

loop-invariant code motion. Experiments show that fully enabling these eager-

load optimizations in the SC-preserving compiler reduces the maximum slowdown

of any benchmark from 34% to 6.5%.

§5.4 explains how to enable eager-load optimizations without violating SC.
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Compiler-inserted interference checks are used to dynamically ensure the cor-

rectness of optimizations that cannot be statically validated as SC-preserving.

Figure 5.2 demonstrates this idea. The figure shows the code from Figure 5.1(a)

and its transformation with an interference check. For the CSE optimization

to be sequentially valid, the compiler already ensures that the variable X is not

modified by instructions between L1 and L3. The interference check lifts this cor-

rectness requirement to concurrent programs by ensuring that no other thread

has modified X since last read at L1. If the check succeeds, the program can

safely reuse the earlier computation of X*2; if not, the program reverts to the

unoptimized code.

These interference checks are a form of targeted, compiler-directed data race

detection. They indicate that races must be detected for a particular location

during execution of a particular code region. Furthermore, the detection mecha-

nism can be conservative (that is, it can report a false positive), without causing

problems since the compiler is required to insert code to recover in case of a race.

This fine-grained detection is quite different from the detection required by drfx,

which cannot report false races and which must perform detection for all memory

accesses.

The interference checks are inspired by a common hardware speculation mech-

anism [GGH91] that is used to safely strengthen hardware memory models. This

mechanism allows a processor to track cache-coherence messages to conservatively

detect when a particular memory location may have been modified by another

processor. An extension of this speculation mechanism can be used to discharge

interference checks efficiently. §5.5 describes a simple interface for exposing this

capability to the compiler, based on the Itanium architecture’s design of a similar

feature [Ita02]. A hardware simulator supporting the speculation mechanism and
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a) redundant load: t=X; u=X; ⇒ t=X; u=t;

b) forwarded load: X=t; u=X; ⇒ X=t; u=t;

c) dead store: X=t; X=u; ⇒ X=u;

d) redundant store: t=X; X=t; ⇒ t=X;

Figure 5.3: SC-preserving transformations

a simulation study on 15 parallel programs from the SPLASH-2 and PARSEC

benchmarks are described in §5.6. By incorporating interference checks into a

single optimization pass, the average performance overhead of the SC-preserving

compiler on simulated TSO hardware is reduced from 3.4% to 2.2% and the

maximum overhead is reduced from 23% to 17%.

5.2 Compiler Optimizations as Memory Reorderings

In this section, compiler optimizations are classified based on how they affect the

memory reorderings of the program [AG96, SA08].

5.2.1 SC-Preserving Transformations

Informally, the (SC) behaviors of a program can be represented as a set of inter-

leavings of the individual memory operations of program threads that respect the

per-thread program order. A compiler transformation is SC-preserving if every

behavior of the transformed program is a behavior of the original program. Note

that it is acceptable for a compiler transformation to reduce the set of behaviors.

Transformations involving thread-local variables and compiler-generated tem-

poraries are always SC-preserving. Furthermore, some transformations involving

a single shared variable are SC-preserving [SA08]. For example, if a program
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performs two consecutive loads of the same variable, as in Figure 5.3(a), the

compiler can remove the second load. This transformation preserves SC as any

execution of the transformed program can be emulated by an interleaving of the

original program where no other thread executes between the two loads. On the

other hand, this transformation reduces the set of behaviors, as the behavior in

which the two loads see different values is not possible after the transformation.

Similar reasoning can show that the other transformations shown in Figure 5.3

are also SC-preserving. Further, a compiler can perform these transformations

even when the two accesses on the left-hand side in Figure 5.3 are separated by

local accesses, since those accesses are invisible to other threads.

5.2.2 Ordering Relaxations

Optimizations that are not SC-preserving change the order of memory accesses

performed by one thread in a manner that can become visible to other threads.

We characterize these optimizations based on relaxations of the following ordering

constraints among loads and stores that they induce: L → L, S → L, S → S, and

L → S.

Consider the CSE example in Figure 5.1(a). This optimization involves re-

laxing the L → L constraint between the loads at L2 and L3, moving the latter

to be performed right after the first load of X at L1, and eliminating it using the

transformation in Figure 5.3(a). If the example contained a store, instead of a

load, at L2, then performing CSE would have involved an S → L relaxation. We

classify an optimization as an eager load if it only involves L → L and S → L re-

laxations, as these optimizations involves performing a load earlier than it would

have been performed before the transformation.

Another example of an eager load optimization is constant/copy propagation
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L1: X = 1;

L2: P = Q;

L3: t = X;

⇒
L1: X = 1;

L2: P = Q;

L3: t = 1;

for(...){

...

P = Q;

t = X*X;

...

}

⇒

u = X*X;

for(...){

...

P = Q;

t = u;

...

}

(a) (b)

Figure 5.4: Examples of eager-load optimizations include constant/copy propagation (a) and
loop-invariant code motion (b). Both involve relaxing the L → L and S → L ordering constraints.

X = 1;

P = Q;

X = 2;

⇒

;

P = Q;

X = 2;

t = X;

P = Q;

X = t;

⇒
t = X;

P = Q;

;

(a) (b)

Figure 5.5: (a) Dead store elimination involves relaxing the S → S and S → L constraints. (b)
Redundant store elimination involves relaxing the L → S and S → S constraints.

as shown in Figure 5.4(a). In this example, the transformation involves moving

the load of X to immediately after the store of X (which requires L → L and

S → L relaxation with respect to the P and Q accesses) and then applying the

transformation in Figure 5.3(b). The loop-invariant code motion example in

Figure 5.4(b) involves eagerly performing the (possibly unbounded number of)

loads of X within the loop once before the loop. This also requires relaxing L → L

and S → L ordering constraints due to the store and load to shared variables P

and Q respectively.

Figure 5.5 shows examples of optimizations that are not eager loads. The

dead-store elimination example in Figure 5.5(a) involves relaxing the S → S and
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S → L constraints by delaying the first store and then applying the SC-preserving

step of combining the adjacent stores as in Figure 5.3(c). Figure 5.5(b) shows

an example of a redundant store elimination that involves eagerly performing

the store of X by relaxing the L → S and S → S ordering constraints and then

applying the transformation in Figure 5.3(d).

5.3 An SC-Preserving Modification to LLVM

This section describes the design and implementation of the optimizing SC-

preserving compiler on top of LLVM and evaluates the compiler’s effectiveness

in terms of performance of the generated code versus that of the baseline LLVM

compiler.

5.3.1 Design

As described in the previous section, we can characterize each compiler optimiza-

tion’s potential for SC violations in terms of how it reorders memory accesses. In

order to build the SC-preserving compiler, each transformation pass performed

by LLVM was examined to determine whether or not it could potentially reorder

accesses to shared memory. The passes were further categorized based on what

types of accesses might be reordered.

Perhaps surprisingly, many of LLVM’s passes do not relax the order of mem-

ory operations at all and these SC-preserving passes can be left unmodified.

These passes include sparse conditional constant propagation, dead argument

elimination, control-flow graph simplification, procedure inlining, scalar replica-

tion, allocation of function-local variables to virtual registers, correlated value

propagation, tail-call elimination, arithmetic re-association, loop simplification,
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Table 5.1: This table lists the passes performed by a standard LLVM compilation for an x86
target that have the potential to reorder accesses to shared memory. The table indicates which
memory orderings may be relaxed and whether the SC compiler disables the pass entirely or
modifies it to avoid reordering.

Short
Nm

Description L → L L → S S → L S → S SC Vers.

LLVM IR Optimization Passes
inst-
combine

Performs many simplifications including algebraic
simplification, simple constant folding and dead
code elimination, code sinking, reordering of
operands to expose CSE opportunities, limited
forms of store-to-load forwarding, limited forms of
dead store elimination, and more.

yes no yes no modified

arg-
promotion

Promotes by-reference parameters that are only
read into by-value parameters; by-value struct
types may be changed to pass component scalars
instead.

yes no yes no disabled

jump-
threading

Recognizes correlated branch conditions and
threads code directly from one block to the cor-
related successor rather than executing a condi-
tional branch. While this threading in itself would
not reorder memory accesses, this pass performs
some partially redundant load elimination to en-
able further jump threading, and that may have
the effect of performing an eager load.

yes no yes no modified

licm Performs loop-invariant code motion and register
promotion.

yes yes yes yes modified

gvn The global value numbering pass performs trans-
formations akin to common subexpression elimina-
tion, redundant and partially redundant load elim-
ination, and store-to-load forwarding.

yes no yes no modified

memcpy-
opt

Performs several optimizations related to mem-
set, memcpy, and memmov calls. Individual
stores may be replaced by a single memset. This
can cause observable reordering of store opera-
tions (e.g. A[0]=-1; A[2]=-1; A[1]=-1 becomes
memset(A,-1,sizeof(*A)*3). This pass can also
introduce additional loads not present in the orig-
inal program through a form of copy propagation.

no yes no yes disabled

dse Performs dead store elimination and redundant
store elimination as described in Figure 5.5

no yes yes yes disabled

x86 Code Generation Passes
seldag Builds the initial instruction selection DAG. Per-

forms some CSE during construction.
yes no no no modified

node-
combine

Performs forms of CSE, constant folding, strength
reduction, store-to-load forwarding, and dead store
elimination on the selection DAG. Can reduce
atomicity of certain operations; for instance a store
of a 64-bit float that can be done atomically on
some architectures may be changed to two 32-bit
integer stores. Also, bit-masking code may be rec-
ognized and changed to smaller operations without
masking. This can have the effect of reordering a
store with prior loads.

yes yes no no modified

scheduling Schedules machine instructions. yes no no no modified
machine-
sinking

Sinks load instructions and dependent computa-
tion to successor blocks when possible to avoid ex-
ecution on code paths where they are not used.

yes no no no modified
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loop rotation, loop unswitching, loop unrolling, unreachable code elimination,

virtual-to-physical register allocation, and stack slot coloring.

Other LLVM optimizations can relax the order of memory operations. Ta-

ble 5.1 lists these optimization passes and classifies the kinds of relaxations that

are possible in each. To ensure that the compiler would be SC-preserving, a few

of these passes were disabled and the remaining passes were modified to avoid

reordering accesses to potentially shared memory.

5.3.2 Implementation

The SC-preserving compiler does not perform any heavyweight and/or whole-

program analyses to establish whether or not a location is shared (e.g., thread-

escape analysis). Simple, conservative, local information is used to decide if

a location is potentially shared. During an early phase of compilation, LLVM

converts loads and stores of non-escaping function-local variables into reads and

writes of virtual registers. Operations on these virtual registers can be freely

reordered. In certain situations, structures that are passed by value to a func-

tion are accessed using load and store operations. The SC-preserving compiler

recognizes these situations and allows these memory operations to be reordered

in any sequentially valid manner. In addition, shared memory operations may be

reordered with local operations. Thus, for instance, it is safe to allow the “inst-

combine” pass to transform t=X; t+=u; t+=X; into t=X«1; t+=u; when both t

and u are local variables.

Incorporating the necessary modifications into LLVM was a fairly natural and

noninvasive change to the compiler code. LLVM already avoids reordering and

removing loads and stores marked as being volatile. Therefore, in the IR opti-

mization passes existing code written to handle volatiles could often be reused
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float Distance(float* x,

float* y, int n)

{

float sum = 0;

int i=0;

for(i=0; i<n; i++){

sum += (x[i]-y[i])

*(x[i]-y[i]);

// Note: x[i] is *(x+i*4)

// and y[i] is *(y+i*4)

}

return sqrt(sum);

}

float Distance(float* x,

float* y, int n)

{

register float sum = 0;

register px = x;

register py = y;

register rn = n;

for(; rn-->0; px+=4,py+=4){

sum += (*px-*py)

*(*px-*py);

}

return sqrt(sum);

}

float Distance(float* x,

float* y, int n)

{

register float sum = 0;

register px = x;

register py = y;

register rn = n;

for(; rn-->0; px+=4,py+=4){

register t = (*px-*py);

sum += t*t;

}

return sqrt(sum);

}

(a) (b) (c)

Figure 5.6: Example demonstrating optimizations allowed in an SC-preserving compiler. The
function in (a) computes the distance between two n-dimensional points x and y represented
as arrays. An SC-preserving compiler is able to safely perform a variety of optimizations,
leading to the version in (b). However, it cannot eliminate the common-subexpression *px -
*py involving possibly-shared accesses to the array elements. A traditional optimizing compiler
does not have this restriction and is able to generate the version in (c).

in order to restrict optimizations on other accesses to shared memory. The pri-

mary mechanism by which reordering was avoided during the x86 code generation

passes was by “chaining” memory operations to one another in program order in

the instruction selection DAG. This indicates to the scheduler and other passes

that there is a dependence from each memory operation to the next and prevents

them from being reordered.

5.3.3 Example

The example in Figure 5.6 helps illustrate why an SC-preserving compiler can

still optimize programs effectively. The source code shown in part (a) of the figure

is a simplified version of a performance-intensive function in one of the bench-
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marks. The function calculates the distance between two n-dimensional points

represented as (possibly shared) arrays of floating point values. In addition to per-

forming the floating point operations that actually calculate the distance, directly

translating this function into x86 assembly would allocate space on the stack for

the locally declared variables and perform four address calculations during each

iteration of the loop. Each address calculation involves an integer multiply and

an integer add operation as hinted by the comments in Figure 5.6 (a). The SC-

preserving compiler is able to perform a variety of important optimizations on

this code:

• Since the locally declared variables (including the parameters) do not escape

the function, they can be stored in registers rather than on the stack.

• CSE can be used to remove two of the address calculations since they are

redundant and only involve locals.

• Loop-induction-variable strength reduction allows us to avoid the multipli-

cation involved in the two remaining address calculations by replacing the

loop variable representing the array index with a loop variable representing

an address offset that starts at zero and is incremented by 4 each iteration.

• Using loop-invariant code motion (and associativity of addition), we can

increment the array addresses directly during each iteration rather than

incrementing an offset and later adding it to the base addresses.

The final result of applying the above SC-preserving optimizations is shown in

part (b) of the figure (using C syntax rather than x86 assembly). The fully

optimizing compiler that does not preserve SC is able to perform one additional

optimization: it can use CSE to eliminate the redundant floating point loads and
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subtraction in each iteration of the loop. The resulting code is shown in part (c)

of the figure.

5.3.4 Evaluation

0.0%

30.0%

60.0%

90.0%

120.0%

150.0%

No optimization Naïve SC-preserving SC-preserving
149 169.5 487

Figure 5.7: Performance overhead incurred by various compiler configurations compared to the
stock LLVM compiler with -O3 optimization for SPEC CINT2006 benchmarks.

This section evaluates the SC-preserving compiler on a variety of sequen-

tial and parallel benchmarks. Even though sequential consistency only concerns

multi-threaded programs, sequential benchmarks are included in this evaluation

since optimizing compilers are tuned to perform well for these benchmarks. The

experimental results indicate that the vast majority of the optimizations in LLVM

responsible for good performance are in fact SC-preserving.

All programs were executed on an Intel Xeon machine with eight cores, each of

which supports two hardware threads and 6 GB of RAM. Each program was eval-

uated using three compiler configurations. The configuration “No optimization” is

the stock LLVM compiler with all optimizations disabled; “Naïve SC-preserving”

enables only those LLVM passes that are already SC-preserving, because they

never reorder accesses to shared memory; and “SC-preserving” is the full SC-

preserving compiler, which includes modified versions of some LLVM passes.

Figure 5.7 shows the results for the SPEC CINT2006 benchmarks. The figure

shows the performance overhead of each benchmark under the three compiler
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configurations, normalized to the benchmark’s performance after being compiled

with the stock LLVM compiler and all optimizations enabled (-O3). With no

optimizations, the benchmarks incur an average 140% slowdown. Re-enabling

just the optimizations guaranteed to preserve SC reduces this overhead all the

way to 34%. The full SC-preserving compiler reduces the average overhead to

only 5.5%, with a maximum overhead for any benchmark of 28%.

The results for parallel applications from the SPLASH-2 and PARSEC bench-

mark suites are shown in Figure 5.10 from Section 5.6 (the last two compiler

configurations shown in the figure pertain to the notion of interference checks

that will be introduced in the next section). The results agree with those of the

sequential benchmarks. Without optimizations the benchmarks incur an average

153% slowdown. Re-enabling “naïvely SC” optimizations reduces the overhead

to 22%, and the full SC-preserving compiler incurs an average overhead of only

2.7%, with a maximum overhead for any benchmark of 34%.

5.4 Speculation for SC-Preservation

As shown in Table 5.1, most of the optimization passes that reorder shared mem-

ory accesses only relax the L → L and S → L orderings. In other words, these

optimizations have the potential to perform eager loads but no other memory

reorderings. In order to evaluate how important these eager-load optimizations

are for performance, experiments for the parallel benchmarks were run using the

SC-preserving compiler with the four (SC-violating) eager-load IR optimization

re-enabled. The “Only-Eager-Loads” configuration in Figure 5.10 illustrates the

results. The benchmark with the largest overhead in the SC-preserving compiler,

facesim, rebounded from a 34% slowdown to only a 6.5% slowdown, and many

other benchmarks regained of all of their lost performance.
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This experiment motivates the desire to speculatively perform eager-load op-

timizations and then dynamically recover upon a possible SC violation in order

to preserve SC. This section describes how the SC-preserving compiler can per-

form such speculation via a notion of interference checks, which conservatively

determine whether a memory location’s value has been modified since it was last

read by the current thread. First the instruction set architecture (ISA) exten-

sions in the hardware that support interference checks will be presented. Then,

a strategy for using these new instructions to speculatively perform eager-load

optimizations in the compiler is described.

5.4.1 ISA Extensions

Interference checks rely on three new instructions to be provided by the archi-

tecture: m.load (monitored load), m.store (monitored store), and i.check (in-

terference check). The m.load and m.store instructions behave as regular loads

and stores but additionally instruct the processor to start monitoring possible

writes to the memory location being accessed. We assume that the processor

can monitor up to a maximum of N locations simultaneously. These instructions

therefore take as an additional parameter a tag from 0 to N − 1, which is used

as an identifier for the memory location being monitored.

The i.check instruction provides a mechanism to query the hardware as to

whether or not writes could have occurred to a set of memory locations. It accepts

an N -bit mask and a recovery branch target as a parameter. The instruction

conditionally branches to the recovery target based on whether or not writes may

have occurred for any of the monitored memory addresses indicated by the mask.

If the instruction does not branch, it is guaranteed that no thread has written to

any of the locations indicated by the mask since the instructions that initiated
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DOM

ORIG

CONTINUE

⇒

DOM’

ORIG’

i.chk monitoredAccesses, rcvr

jump cont

rcvr: RECOVER

cont: CONTINUE’

Figure 5.8: Introducing interference checks when performing eager-load transformations in
ORIG, a single-entry, single-exit region of code with no stores. Either or both of DOM’ and
ORIG’ contain the definitions for monitoredAccesses for the eager loads involved in the trans-
formation.

their monitoring were executed. When using an i.check in the examples below,

we will list the tags explicitly for clarity rather than using a bit mask.

Note that the use of tags to identify accesses, rather than simply identifying

them with the address they access, allows the compiler to safely and accurately

use interference checks in the face of potential aliasing. The compiler may end

up simultaneously monitoring two accesses to the same location using separate

tags due to unknown aliasing. The hardware will correctly report interference

between the time when the monitored access for each tag was executed and the

time of the i.check for that tag. This design places the burden on the compiler

to manage the hardware resources available for monitoring. It must ensure that

when it reuses a tag, the access that was previously assigned to that tag no longer

needs to be monitored.

5.4.2 Interference Check Algorithm

Figure 5.8 illustrates how the compiler performs eager load optimizations with

interference checks. In the figure, ORIG represents a store-free block of code

in which we would like to perform eager load optimizations (e.g., eliminating

a load and using a value loaded or stored earlier). DOM represents code that
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dominates ORIG and which may contain accesses we would like to monitor and

reuse when performing the optimization. CONTINUE is the code that follows ORIG.

Performing SC-preserving eager load optimizations may require transforming all

of these blocks of code, as well as adding a block of code called RECOVER which is

essentially a copy of the original ORIG block to be used when potential interference

occurs. Informally, the algorithm works on code in Static Single Assignment form

(SSA)[CFR91] in the following steps:

1. Find a contiguous, single-entry, single-exit block of code without stores.

Call this block ORIG.

2. Create a branch target at the first instruction after ORIG. Call the following

instructions, starting at this new target, CONTINUE.

3. Make a copy of ORIG in its entirety and call it RECOVER. Note that, since we

are manipulating SSA code, all local and temporary values will be given a

new SSA name in the copied code.

4. Apply eager-load transformations in ORIG and call the resulting block of

code ORIG’. The transformations may include any combination of the fol-

lowing:

(a) Eliminate a load and replace its uses with a value from a previous

load or store to that address that dominates the current load. This

prior memory access may or may not be in ORIG. Convert this previous

memory access to an m.load or m.store if it is not already one. If

multiple definitions reach the load to be removed, all of them have to

be converted.

(b) Hoist a load from ORIG to a position dominating all of its uses, poten-

tially reordering with previous load and/or store operations. Its new
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position may or may not be in ORIG. Convert the hoisted load to an

m.load.

We’ll call the code that dominated ORIG and may now contain monitored

instructions DOM’. Each access that is converted to a monitored instruction

must use a distinct tag, so the compiler is limited to at most N eager-load

conversions in this step.

5. Perform any desired SC-preserving optimizations on the code remaining in

ORIG’.

6. Insert an i.check instruction after ORIG’ that checks for interference on

all accesses that were marked as monitored by step 4 and branches to the

recovery code on failure.

7. For each value that is live-out of ORIG, transform CONTINUE by inserting

an SSA phi instruction at the beginning that chooses the appropriate value

based on whether code flowed from ORIG’ or RECOVER. Call the transformed

block CONTINUE’.

5.4.3 Implementation and Example

The SC-preserving compiler implementation modifies LLVM’s global value num-

bering (GVN) pass to make use of interference checks in order to allow more

aggressive optimization while maintaining SC. The GVN pass performs a variety

of eager-load optimizations, including CSE, partial redundancy elimination, and

copy/constant propagation. The technique could also apply to other passes that

perform eager load optimizations..

Figure 5.9 shows some LLVM IR code that calculates X2+Y+X2, along with the

transformations that take place on it during the GVN pass in order to eliminate
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the redundant computation of X2. Virtual registers, or temporaries, are prefixed

by the % symbol and are in SSA form. First, the GVN pass removes the second

load of memory location X (which defines %5) and replaces all of its uses with the

first load of X. After this load elimination, we are left with the code in (b), where

it is clear that the second mul instruction is unnecessary, so it is removed and its

use is replaced with the previously calculated value in virtual register %2. The

final code with the load and multiply eliminated is shown in (c). Figure 5.9(d)

shows the result of applying the above algorithm to add interference checks and

make this transformation SC-preserving.

5.4.4 Correctness of the Algorithm

Let us now establish that the above algorithm for inserting interference checks is

SC-preserving. First consider the case when the interference check fails. Neither

ORIG nor ORIG’ contains any stores. Thus, the state of non-local memory does not

change during the execution of ORIG’. As the code is in SSA form, all the effects

of ORIG’ on local state become dead once the code switches to RECOVER, which

is a copy of ORIG. Hence, other than needlessly executing ORIG’, the transformed

program has the same behavior as the original program when the interference

check fails.

Now consider the case when the interference check succeeds. This means that

each monitored memory location is guaranteed to be unmodified from the start of

monitoring through the execution of ORIG’. The key property of the algorithm

is that every memory location involved in an eager load is monitored from the

point where the eager load occurs until at least the point at which the load would

have occurred in the original program (since it would have occurred somewhere

within ORIG). Thus the value loaded in the optimized code is the value that would

104



have been read by the original program, thereby preserving SC.

5.5 Hardware Support for Interference Checks

In this section hardware support for efficiently implementing the m.load, m.store,

and i.check instructions is described. The hardware changes required are sim-

ple and efficient, and therefore practical. In fact, the newly proposed instructions

are similar to the data speculation support in the Itanium’s ISA [Ita02], which

was designed to enable speculative optimizations in a single thread in the face of

possible memory aliasing. The design safely supports both the goal of ensuring

sequential consistency as well as Itanium’s speculative load optimizations. The

required hardware support is simple: a structure to store N addresses (32 in this

implementation), each with an associated bit indicating whether the address was

possibly written.

5.5.1 Hardware Design

Interference checks are supported using a structure called the Speculative Memory

Address Table (SMAT) which is similar to the Advanced Load Address Table

(ALAT) used in Itanium processors [Ita02]. SMAT is a Content-Addressable-

Memory (CAM). It has N entries, enabling the compiler to monitor interference

on N addresses at any instant of time. Each entry in the SMAT contains an

address field and an interference bit.

We collectively refer to m.load and m.store instructions as monitor instruc-

tions. As described in the previous section, each monitor instruction contains a

tag between 0 and N − 1. When executing a monitor instruction, the hardware

stores the address accessed by that instruction in the SMAT entry specified by the
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tag, resets that entry’s interference bit, starts to monitor writes to the address,

and executes the memory operation requested by the instruction.

A processor core can easily detect when another processor core wants to write

an address by monitoring invalidation coherence requests. When a processor core

receives an invalidation to a cache block, the interference bit of each SMAT entry

holding an address from that block is set. The interference bit of an entry is also

set when a store to the associated address commits from the current processor.

While the latter behavior is not necessary to preserve SC, it enables Itanium-style

speculative load optimizations [Ita02].

The compiler generates an i.check instruction with an N -bit mask to check

for interference on a maximum of N different addresses. Each bit in the mask

corresponds to an entry in the SMAT. The hardware executes the i.check in-

struction by checking the interference bits of the SMAT entries specified in its

mask. If any of the checked interference bits is set, the hardware branches to the

recovery code whose target is specified in the i.check instruction.

The hardware updates the SMAT for a monitor instruction and executes

i.check instructions only when they are ready to commit from a processor core’s

instruction window. This ensures that the hardware does not update SMAT en-

tries speculatively while executing instructions on an incorrect path taken due to

branch misprediction. Nevertheless, the semantics of these instructions requires

that the hardware notice interference from the moment the instruction executes

(i.e., when an m.load receives its value from the cache). An existing hardware

mechanism, described in §5.5.2, can be relied upon to perform the monitoring

between the time an m.load executes and the time it commits from the ROB.
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5.5.2 Relation To In-Window Hardware Speculation

The approach of monitoring invalidation coherence requests to detect interference

for a set of addresses is similar to what many processors already implement for

efficiently supporting TSO at the hardware level [GGH91]. TSO does not allow a

load to be executed before another load in program order even if they are accessing

different addresses. To achieve good performance, Gharachorloo et al. [GGH91]

proposed to speculatively execute loads out-of-order. However, instructions are

still committed in order from a FIFO queue called the reorder buffer (ROB).

Therefore, to detect misspeculation the hardware simply needs to detect when

another processor tries to write to an address that has been read by a load that

is yet to commit from the ROB. This is achieved by monitoring the address

of invalidation coherence requests from other processor cores. On detecting a

misspeculation, the hardware flushes the misspeculated load and its following

instructions from the pipeline and restarts execution.

The proposed hardware design essentially extends the above hardware mecha-

nism to detect interference for addresses of certain memory operations (specified

by the compiler) even after they are committed from the ROB. This allows a

compiler to eagerly execute loads and later check for interference at the original

location of the load in the source code. On an m.load, the monitoring needs to

start logically when the processor receives the value of the load. However, the

SMAT entry is updated only when the instruction is committed. In between the

two events, when the load instruction is in flight in the ROB, the monitoring

performed above is sufficient to provide the required semantics of the i.check.
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5.5.3 Conservative Interference Checks

While an implementation of interference checks must detect interference whenever

it occurs, it is legal to signal interference when none actually exists. Such false

positives are acceptable in this design because they simply result in execution of

the unoptimized code, losing some performance but maintaining SC. The ability

to tolerate false positives avoids a number of potentially complex issues and keeps

the hardware simple.

First, the hardware monitors interference at the cache block granularity as

coherence invalidation messages operate at cache block level. This may result in

false positives when compared to a detector that monitors byte-level access. But

the probability that a cache block gets invalidated between a monitor instruction

and an i.check is very low. Moreover, frequent invalidations or “false sharing”

of hot cache lines result in performance degradations and thus can expected to

be rare in well-tuned applications.

Second, SMAT entries for a cache block that gets evicted due to capacity

constraints are conservatively invalidated. Monitoring interference for uncached

blocks would require significant system support (similar in complexity to un-

bounded transactional memory systems [CNV06]).

Third, in ISAs like x86 one memory instruction could potentially access two or

more cache lines, but a SMAT entry can monitor only one cache block address. To

address this problem, if a monitor instruction accesses more than one cache block,

the interference bit for the SMAT entry is immediately set. This could cause a

future i.check to fail forcing execution down an unoptimized path. Fortunately,

such unaligned cache accesses are rare.

Finally, a context switch may occur while multiple addresses are monitored
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in the hardware SMAT. Instead of virtualizing this structure, the interference bit

in all SMAT entries is set after a context switch. This may cause future i.check

instructions from a thread to fail unnecessarily when it is context switched back

in, but this overhead is likely to be negligible since context switches are relatively

rare when compared to the frequency of memory accesses.

5.6 Results

The experimental results relating to the performance of the base SC-preserving

compiler were discussed in Section 5.3.4. In this section we discuss additional ex-

periments which evaluate the potential effectiveness of using interference checks.

In addition, the performance of the SC-preserving compilers is compared to a fully

optimizing compiler running on simulated hardware that uses a DRF0 memory

model which is more relaxed (allows more hardware reorderings) than TSO. This

gives a sense of the performance burden of providing a strong, end-to-end memory

model across hardware and software.

5.6.1 Compiler Configurations

As described in Section 5.3.4, the baseline compiler is the out-of-the-box LLVM

compiler with all optimizations (-O3). The experiments on parallel benchmarks

use the three compiler configurations discussed in that section (“No optimization”,

“Naïve SC-preserving”, and “SC-preserving”), as well as two additional configu-

rations. The “Only Eager Loads” configuration includes all the optimizations

from the SC-preserving compiler plus the unmodified (SC-violating) version of

all IR passes that perform only eager load optimizations (GVN, instcombine, arg-

promotion, and jump-threading). This configuration is intended to give a sense
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Table 5.2: Baseline IPC for simulated DRF0 hardware running binaries from the stock LLVM

compiler.

Application Avg. IPC Application Avg. IPC

blackscholes 1.94 bodytrack 1.61

fluidanimate 1.28 swaptions 1.67

streamcluster 1.42 barnes 1.57

water(nsquared) 1.66 water(spatial) 1.66

cholesky 1.78 fft 1.39

lu(contiguous blocks) 1.64 radix 0.99

of the opportunity for improvement available to optimizations based on the in-

terference check technique and is only used for experiments on native hardware

and not on simulated machines. Finally, the “SC-preserving+GVN w/ ICheck”

configuration includes all of the optimizations from the SC-preserving compiler

plus a modified GVN pass that is made SC-preserving using interference checks

and recovery code. When this configuration targets a simulated machine with

appropriate support, it emits m.load, m.store, and i.check instructions. But

when it targets native hardware, the configuration emits m.load and m.store in-

structions as regular loads and stores and emulates a never-failing i.check using

a logical comparison of constant values followed by a conditional branch. Thus,

when running on the native machine, the overhead caused by increased code size

and the additional branch is captured, but the effect of actual or false conflicts

on monitored accesses is not. In a real implementation, however, we expect the

i.check instruction to be more efficient than a branch.

5.6.2 Benchmarks

The performance of the various compiler configurations was evaluated on the

PARSEC [BKS08] and SPLASH-2 [WOT95] parallel benchmark suites. Table 5.2

lists the average instructions executed per cycle (IPC) for each of these bench-
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marks when compiled with the stock LLVM compiler at -O3 optimization and

run on simulated DRF0 hardware which implements weak consistency and is de-

scribed below. All of these benchmarks are run to completion. For experiments

on actual hardware, the native input for PARSEC benchmarks was used, while

for the simulated machines, the sim-medium input set was used to keep the sim-

ulation time reasonable. (Since streamcluster was especially slow to simulate,

the sim-small input was used.) For SPLASH-2 applications, the default inputs

were used for simulation while inputs were modified to increase the problem size

for experiments on native hardware. Correct behavior of the benchmarks under

all compiler configurations was verified by using a self-testing option when avail-

able, or by comparing results with those produced when compiling the benchmark

using gcc.

5.6.3 Experiments on Native Hardware

All six compiler configurations (including the baseline) were evaluated on an In-

tel Xeon machine with eight cores, each of which supports two hardware threads

and 6 GB of RAM. Each benchmark was run five times for each compiler con-

figuration and the execution time was measured. (The results given here are

for CPU user time, though the results for total time elapsed were very simi-

lar.) The overheads given are relative to the baseline, fully-optimizing compiler

and are shown in Figure 5.10. Let’s consider the base SC-preserving compiler

first. Notice that for many of the benchmarks, restricting the compiler to per-

form only SC-preserving optimizations has little or no effect. In fact, in some

cases, disabling these transformations appears to speed the code up, indicating

that the compiler ought not to have performed them in the first place. There

are several benchmarks, however, for which the SC-preserving compiler incurs a
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noticeable performance penalty, 34% in the case of facesim.1 On average, we

see a 2.7% slowdown. Consider now the compiler configuration which re-enables

various eager load optimizations. Several of the applications which suffered a

significant slowdown under the SC-preserving compiler regain much of this per-

formance in this configuration. Most notably, facesim vastly improves to 6.5%

and bodytrack, streamcluster, and x264 recover all (or nearly all) of their

lost performance. On average, the compiler with eager load relaxations enabled

is as fast as the stock compiler, indicating that the technique of using interfer-

ence checks to safely allow eager load optimizations holds significant promise.

Finally, the rightmost bar in the graph shows the slowdown of the aggressive

SC-preserving compiler that includes the modified GVN pass with interference

checks. (Remember, we are running on a native machine in this set of exper-

iments, so a never-fail load check is emulated.) This technique regains a good

portion of the performance lost by the base SC-preserving compiler for facesim,

reducing the overhead from 34% to under 20%, with streamcluster and x264

showing a more modest improvement.

5.6.4 Experiments on Simulated Machines

To study the performance of interference checks in hardware, the benchmarks

were run on a cycle-accurate, execution driven, Simics [MCE02] based x86_64

1Additional profiling and investigation revealed that the slowdown in facesim was largely
caused by a commonly invoked 3x3 matrix multiply routine. The SC-preserving compiler was
unable to eliminate the two redundant loads of each of the 18 shared, floating point matrix
entries involved in the calculation. This resulted in 36 additional load instructions for each
matrix multiplication performed by the SC-preserving version of facesim. The modified GVN
pass with interference checks is able to relegate the 36 additional loads to the recovery code,
eliminating them on the fast path. A straightforward rewrite of the source code to first read
the 18 shared values into local variables would have allowed the base SC-preserving compiler
to generate the fully optimized code.
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Table 5.3: Simulated processor configuration for evaluation of SC-preserving compiler with
interference checks.

Processor 4 core CMP. Each core operating at 2Ghz.
Fetch/Exec/Commit
Width

4 instructions(maximum 2 loads or 1 store) per cycle in each core.

Store Buffer TSO: 64 entry FIFO buffer with 8 byte granularity. DRF0, DRFx: 8
entry unordered coalescing buffer with 64 byte granularity.

L1 Cache 64 KB per-core (private), 4-way set associative, 64B block size, 1-cycle
hit latency, write-back.

L2 Cache 1MB private, 4-way set associative, 64B block size, 10-cycle hit latency.
Coherence MOESI directory protocol
Interconnection Hierarchical switch, 10 cycle hop latency.
Memory 80 cycle DRAM lookup latency.

SMAT 32 entries CAM structure, 1 cycle associative lookup

simulator called FeS2 [FeS]. The benchmarks were also run on simulated TSO

hardware, with and without support for interference checks, and compared it to

DRF0 hardware that supports weak consistency. The processor configuration

that was modelled is shown in Table 5.3. For the TSO simulation, a FIFO store

buffer that holds pending stores and retires them in-order was used. Speculative

load execution support [GGH91] was also modelled. The weakly consistent DRF0

simulation allowed stores and loads to retire out-of-order.

Figure 5.11 shows the results of the simulation study. When compared to

the fully optimizing compiler configuration running on the simulated DRF0 ma-

chine, the performance overhead of using the SC-preserving compiler on simulated

TSO hardware is 3.4% on average. This cost is reduced to 2.2% when the GVN

pass with interference checks is used. For several programs that incur significant

overhead, such as bodytrack and facesim, the interference check optimizations

reduce the overhead to almost zero. For streamcluster, the overhead is reduced

from about 23% to 17%. The frequency of load-check failures is, on average, only

about one in ten million instructions. This indicates that the performance over-

head due to false positives arising from several hardware simplifications described
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in Section 5.5.3 is negligible.

5.7 Conclusion

Sequential consistency is an intuitive memory model, but is widely believed to be

difficult or impossible to implement efficiently. The research in this chapter em-

pirically demonstrates that the performance incentive for relaxing SC semantics

in the compiler is much less than previously assumed. Building an SC-preserving

compiler required only simple modifications to LLVM, a state-of-the-art C/C++

compiler. For a wide range of programs from the SPLASH-2, PARSEC, and

SPEC CINT2006 benchmark suites, the SC-preserving compiler results in a per-

formance overhead of only 3.8% on average with a maximum of 34% overhead.

In the case where even small overheads are unacceptable, targeted, fine-

grained, compiler-directed, conservative race detection can enable additional op-

timizations while still preserving SC semantics. Interference checks are an imple-

mentation of such a detection mechanism. They allow the SC-preserving compiler

to regain much of the performance lost due to restrictions on SC-violating com-

piler optimizations.

114



Original Load Eliminated CSE SC with i.check

// DOM

%1 = load X

%2 = mul %1, %1

%3 = load Y

%4 = add %2, %3

//ORIG

%5 = load X

%6 = mul %5, %5

//CONTINUE

%7 = add %4, %6

⇒

// DOM

%1 = load X

%2 = mul %1, %1

%3 = load Y

%4 = add %2, %3

// ORIG’

%6 = mul %1, %1

// CONTINUE

%7 = add %4, %6

⇒

// DOM

%1 = load X

%2 = mul %1, %1

%3 = load Y

%4 = add %2, %3

// ORIG’

// CONTINUE

%7 = add %4, %2

// DOM’

%1 = m.load X, 0

%2 = mul %1, %1

%3 = load Y

%4 = add %2, %3

// ORIG’

orig:

i.check 0, rcvr

jump cont

// RECOVER

rcvr:

%5 = load X

%6 = mul %5, %5

// CONTINUE

cont:

%merge = phi (orig, %2,

rcvr, %6)

%7 = add %4, %merge

(a) (b) (c) (d)

Figure 5.9: GVN first transforms program (a) into (b) by eliminating the “available load” from
X, then notices that the result of the second multiplication has already been computed and
performs common subexpression elimination to arrive at (c). This transformation is not SC
since it reorders the second load of X with the load of Y.
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-10.0%

10.0%

30.0%

50.0%

70.0%

No optimization Naïve SC-preserving SC-preserving Only-Eager-Loads SC-preserving+GVN w/Icheck

373.1 480 298 132.1 95.5 173.1 200 116.5 154 236.5 153.189.1 75.789.7

Figure 5.10: Performance overhead incurred by the various compiler configurations compared
to stock LLVM compiler with -O3 optimization running on native Xeon hardware for PARSEC
and SPLASH-2 benchmarks.

Figure 5.11: Performance overhead of SC-preserving compiler on simulated TSO hardware
with and without using interference checks relative to fully optimizing SC-violating compiler
on simulated DRF0 hardware.
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CHAPTER 6

Related Work

6.1 Data Race Detection

Prior data race detection can be broadly classified into static and dynamic tech-

niques. Static techniques include those that use type-based analysis [BLR02,

FF00, SAW05] or data-flow analysis [Ste93, EA03, NAW06, VJL07, PFH06] to

ensure that all data accesses are consistently protected by locks. Many of these

techniques are scalable and most are complete in that they find all data races in

a program. The downside is that static techniques are inherently imprecise and

typically report a large number of false data races that place a tremendous bur-

den on the user of the tool. More importantly, these techniques are not able to

handle synchronizations other than locks, such as events, semaphores, and condi-

tion variables common in many systems programs. Thus, data accesses that are

synchronized through these mechanisms will be falsely reported as potential data

races. Model checking techniques [HJM04, QW04] are capable of handling such

synchronizations, but are not scalable due to the complexity of their analysis.

Dynamic analyses, like those presented in this dissertation, do not suffer from

these problems.

One of the main limitations of dynamic data race detection tools is their

high run-time overhead. There have been attempts to ameliorate the perfor-

mance cost of dynamic analysis using static optimizations for programs written
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in strongly typed languages [CLL02]. Dynamic data race detectors for managed

code [YRC05] also have the advantage that the runtime system already incurs

the cost of maintaining metadata for the objects, which they make use of. For

unmanaged code like C and C++, however, the runtime performance overhead

of data race detection remains high. Intel’s ThreadChecker [SBM06], for exam-

ple, incurs about 200× overhead to find data races. The detection techniques

described in this dissertation target particular problems. As such they can fail

to find certain races while still proving useful.

6.1.1 Happened-before versus Lockset Dynamic Detection

Dynamic race detection algorithms can be broadly classified into happened-before

based algorithms [Lam78, Net93, AHM91, CMN91, DS90, Cru91, Sch89, PK96,

RB00, MC91], lockset based algorithms [SBN97, PG01, Nis04, ASW05] and hy-

brid algorithms that combine the two [DS91, YRC05, OC03, PS03].

One class of data race detectors use the lockset algorithm. The lockset algo-

rithm checks whether each shared variable in a program is consistently guarded

by at least one lock. Eraser [SBN97] implements the lockset algorithm using

instrumentation to dynamically find the data races during a program’s execu-

tion. This algorithm has been extended to object-oriented languages [PS03] and

improved for precision and performance [ASW05, Nis04, PG01, CLL02]. The

lockset algorithm has the potential to report false positives due to conflicting

accesses that are ordered using synchronization mechanisms other than locks. A

recent work [LTQ06] reports that a lockset algorithm resulted in thousands of

false positives for scientific applications.

Happened-before-based detectors, on the other hand, check whether conflict-

ing accesses to shared variables are ordered by explicit synchronization oper-
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ations or not. Many dynamic race detectors implement the happened-before

algorithm in software[RB00]. Hardware [MC91, PT03] and Distributed-Shared-

Memory [PK96, RL98] implementations have also been proposed to reduce the

runtime overhead of these detectors. The advantage of using a happened-before

algorithm is that it can detect the data races with no false positives, although

for programs that use mainly locks, it may detect a potential data race in the

program on fewer executions than the lockset approach would.1

LiteRace uses happened-before-based detection rather than lockset because

it aims to support applications that use a variety of synchronization primitives,

not just locks. Though the sampling technique used in LiteRace could equally

well be applied to a lockset-based detector. The detection mechanism used in

drfx can also be thought of as happened-before-based, since any races from

concurrently executing regions arise from conflicting accesses that are not ordered

by the happened-before relation.

It is also possible to combine the happened-before and lockset algorithms [DS91,

YRC05, OC03, PS03] to get coverage and performance close to a lockset algo-

rithm, and at the same time reduce false positives using happened-before rela-

tions.

6.1.2 Sampling Techniques for Dynamic Analysis

The technique used in LiteRace was inspired by prior work in dynamic analyses

other than data race detection. Arnold et al. [AR01] proposed sampling tech-

niques to reduce the overhead of instrumentation code in collecting profiles for

1The lockset algorithm reports a race as soon as the set of potential locks protecting a
location is determined to be empty. This can happen even on an execution/interleaving where
there is a happened-before relationship between two accesses.
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feedback directed optimizations. Chilimbi and Hauswirth proposed an adaptive

sampler for finding memory leaks [HC04]. LiteRace extends their solution to the

sampling of multi-threaded programs, and shows that samplers can be effectively

used to find data races as well. QVM [AVY08] is an extension to the Java Vir-

tual Machine that provides an interface to enable dynamic checking such as heap

properties, local assertions, and typestate properties. It uses sampling to trade-

off accuracy with runtime overhead. The sampling technique used in QVM is

object-centric, in that, all the events to a sampled object’s instance are profiled.

In contrast, the samplers in LiteRace are based on the cold-region hypothesis.

6.2 Memory Models

6.2.1 Reducing the Cost of Sequential Consistency

Weak memory models are not necessary if both the compiler and the hardware

can guarantee SC without prohibitive performance cost. Prior work has explored

this possibility.

Several static analyses insert fences in a program to guarantee SC. Shasha

and Snir proposed the delay sets algorithm for this purpose [SS88]. Krishna-

murthy and Yelick [KY96] proved that computing a minimal delay set (i.e., set

of fences) for a program is NP-complete. Two recent projects, Titanium [KSY05]

and Pensieve [SFW05], extend the delay set algorithm to reduce the number of

fences needed to guarantee SC. In addition, [LNG10] describes a new hardware

mechanism called a conditional fence that can reduce the cost of executing all

of the inserted fences in hardware. These analyses leverage a number of tech-

niques to determine whether a memory location can potentially be involved in

a race, including sharing inference [LAY03], pointer alias analysis, and thread
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escape analysis. These techniques require fairly-complex whole-program analyses

that are difficult to scale to large programs, especially for languages like C++.

But when applicable, they guarantee end-to-end SC for all programs since the

inserted fences prevent reorderings by both the compiler and the hardware.

In contrast, the drfx model does not require expensive analysis, but does

require specialized hardware support. It allows the compiler and hardware to

freely perform sequentially valid reorderings (other than speculative accesses)

within a region (in addition, hardware can optimize across regions delimited

by soft fences) without requiring any additional static analysis. But, it only

guarantees SC for data-race-free programs and may terminate racy programs.

The SC-preserving compiler avoids introducing SC violations during compilation

using simple modular techniques and still manages to optimize effectively, but it

does not prevent hardware reorderings from violating SC.

At the hardware level, various forms of speculation have been proposed to

reduce the performance overhead of SC [RPA97, BMW09, CTM07]. Of course,

these techniques can only guarantee SC of the compiled program and cannot

detect the non-SC behavior introduced by the compiler. Recent work on the

BulkCompiler [AQL09] addresses this problem in the context of Java programs

that use locks. The bulk compiler partitions a program into “chunks” and the

BulkSC hardware employs speculation and recovery to ensure serializable execu-

tion of chunks. Even then, all these hardware proposals above require speculative

execution, checkpointing, and rollback in case of conflicts, which tremendously

increases the hardware complexity. Unlike drfx, these proposals require possibly

unbounded resources and thus have to include appropriate mechanisms to handle

overflow cases.
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6.2.2 Always-on Race Detection and Memory Model Exceptions

Prior research has suggested using data race detection as a way to terminate

buggy programs at runtime. Elmas et al. [EQT07] augment the Java virtual ma-

chine to dynamically detect bytecode-level data races and raise a DataRaceException.

Recently, Boehm [Boe09] provided an informal argument for integrating an ef-

ficient always-on data-race detector to extend the DRF0 model by throwing an

exception on a data race. However, precisely detecting data races either incurs 8×

or more performance overhead in software [FF09] or incurs significant hardware

complexity [PT03, MSQ09] despite many proposed optimizations to the basic

technique. The large overhead comes from the need to dynamically build the

happened-before relation [Lam78] between pairs of memory operations. Further-

more, when a memory operation occurs, it may need to be compared with other

memory operations that occurred arbitrarily “far” in the past (which means that

a hardware detector would have to somehow maintain information for evicted

cache blocks as well).

The drfx memory model builds on the work of Gharachorloo and Gibbons [GG91],

who recognized that it suffices to detect SC violations directly rather than data

races. They describe a simple conflict detection algorithm that ensures drfx’s

DRF and Soundness properties, but only with respect to the compiled version

of a program. Their detection is not sufficient to guarantee SC in terms of

the original program since it ignores the effects of possible compiler reorder-

ings [CDL09, GG91]. drfx extends their approach with a notion of regions to

safely allow such compiler reorderings while still detecting all SC violations.

In concurrent work to our work on drfx, Lucia et al. [LCS10] also proposed a

hardware exception mechanism to simplify memory consistency models for pro-

gramming languages. Lucia et al. ensure a stronger property than SC, namely
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atomicity of synchronization-free regions, which are maximal regions of code de-

limited by synchronization operations. This property can be quite useful for

understanding and debugging concurrent programs. However, it introduces ad-

ditional complexity for conflict detection as they have to deal with unbounded

regions. Also, conflicts must be caught as soon as they occur to prevent non-SC

state being exposed to system calls. Finally, like drfx, they too have to avoid

false conflicts. Performing precise and eager conflict detection at byte granular-

ity for unbounded-size regions is arguably more complex than our lazy conflict

detection with bounded regions. The drfx implementation achieves efficiency in

spite of smaller bounded regions by distinguishing soft fences from hard fences

and allowing the hardware to optimize across soft fences.

The interference checks in the SC-preserving compiler are a form of dynamic

data-race detection that is sufficient to ensure that certain compiler transforma-

tions don’t violate SC. While the approaches above detect all races that could vio-

late end-to-end SC, interference checks only target SC violations that result from

compiler reorderings. However, they have the advantage of being fine-grained,

requiring data race detection only for variables that are involved in a compiler

optimization and only during the dynamic lifetime of that optimization’s effect.

Also, the detection is made possible with relatively minimal hardware support

based on speculation mechanisms that exist in real hardware [Yea02], rather than

requiring the complexity of TM-style conflict detection. Finally, this work shows

how to safely recover from interference for common compiler optimizations based

on eager loads. This allows the execution to continue while maintaining SC,

avoiding the need to throw an exception.
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6.2.3 Transactional Memory Systems

Hammond et al. [HWC04] proposed a memory consistency model based on a

transactional programming model [HM93]. In their approach, the programmer

and compiler cooperate to ensure that each instruction is part of some trans-

action. The hardware then ensures that each transaction executes atomically,

which in turn guarantees SC. This approach is applicable for programs written

using explicit transactions, whereas drfx is useful for programs written using

locks and other traditional forms of synchronization.

The drfx hardware conflict detection algorithm is similar to the one proposed

by Hammond et al. [HWC04] but is simplified in a few ways. First, transactions

require additional runtime support for versioning and rollback, which adds over-

head and is difficult across system events such as I/O. Second, because program-

mers define their own transactions, the system cannot bound their size, whereas

regions in drfx are constructed by the compiler and so are easily bounded. How-

ever, transactional memory systems can incur false conflicts at the expense of

extra overhead, while conflict detection in the drfx model must be precise, which

adds some extra complexity in the hardware.

6.3 Compiler Optimizations

6.3.1 Strengthening Memory Models by Restricting the Compiler

In recent work, Ševčík et al. describe a concurrency extension to a small C-like

programming language that provides end-to-end TSO semantics [SVZ11]. They

modify an existing compiler for the language and mechanically prove that the op-

timizations are TSO-preserving, thereby providing an end-to-end guarantee when

the resulting binaries are executed on x86 hardware. Our performance measure-

124



ments complement their work by indicating that a TSO-preserving compiler could

be practical to use in a full-fledged programming language.

6.3.2 Optimistic Optimization via Hardware Speculation

The SC-preserving compiler’s interference checks are inspired by a common hard-

ware mechanism for enabling out-of-order execution in the presence of strong

memory models [GGH91]. This mechanism [Yea02] allows a memory load to be

executed out-of-order speculatively, before earlier instructions have completed.

Once those instructions have completed, the load need not be re-executed if the

value has not changed in the meanwhile, and this can be conservatively detected

by checking if the associated cache line has been invalidated. This work demon-

strates how the technique can be adapted to the compiler by viewing common

compiler optimizations as performing eager (i.e., speculative) reads; a simple in-

terface through which the hardware can expose this mechanism to the compiler

is described.

Others have proposed hardware support for dynamically detecting memory

aliasing between local loads and stores in a single thread and expose that feature

to the compiler so that it can perform optimistic optimizations [GCM94, PGM00].

The Itanium processor implemented this feature using an Advanced Load Ad-

dress Table (ALAT) to enable aggressive load optimizations [Ita02]. Recently,

Nagarajan and Gupta [NG09] extended Itanium’s ALAT mechanism to detect

memory aliasing with remote writes, enabling the compiler to speculatively re-

order memory operations across memory barriers. While interference checks use a

mechanism similar to these proposals, they solve a different problem: preserving

SC in the face of common compiler transformations.
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CHAPTER 7

Conclusion

Data races are a common flaw in shared memory, concurrent programs. They

often lead to insidious bugs that are difficult to isolate and fix. Even assum-

ing that programs exhibit sequentially consistent behavior, data races can lead

to confusing outcomes. Moreover, modern architectures and programming lan-

guages provide relaxed memory models, weaker than sequential consistency, that

further complicate reasoning about racy programs.

Detecting data races has been the subject of much research effort, and both

static and dynamic techniques exist for finding them. But static approaches

report many false positives and have limited applicability while precise dynamic

data race detection drastically slows programs making it impractical to apply

in many situations. The research in this dissertation aims to make data race

detection practical and helpful to programmers of shared memory, concurrent

programs. It demonstrates how efficient forms of imprecise dynamic data race

detection can be applied to find bugs and to simplify memory models.

LiteRace uses intelligent sampling to make data race detection for the purpose

of bug finding efficient. While it can fail to find some races exhibited during an

execution, it never reports a false positive, thus easing the burden on programmers

and testers. The sampler, based on the cold path hypothesis, manages to find

nearly 70% of the races exhibited in a program while analyzing only 2% of the

dynamic memory accesses. The average overhead of only 28% makes running
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LiteRace on many test executions feasible, thus allowing more data races to be

uncovered.

The drfx memory model uses a novel form of cooperation between the com-

piler and the hardware in order to provide strong, end-to-end guarantees to pro-

grammers. While current DRF0 memory models provide weak or no semantics

to racy programs, drfx provides simple guarantees for executions of all pro-

grams: if an execution terminates in a memory model exception, the program

has a data race; if an execution terminates normally, it exhibits SC behavior.

drfx efficiently provides this guarantee by targeting data race detection only

at concurrently executing, bounded regions of code. By avoiding optimizations

across region boundaries in the compiler and the hardware, SC behavior is guar-

anteed if a race is not detected among regions that execute concurrently, even

if other data races in the program go undetected. The detection employed by

drfx hardware must never report a false race, otherwise data-race-free programs

could be terminated, violating the guarantee. Experimental results show that a

set of benchmarks built using a drfx-compliant compiler and run on simulated

drfx-compliant hardware incur an average slowdown of only 11% on average.

The SC-preserving compiler calls into question the importance of violating

sequential consistency for the sake of performance when optimizing programs in

a compiler. Modifying LLVM, a state-of-the-art C and C++ compiler, to be SC-

preserving results in only 3.8% overhead on average for a set of benchmarks run

on a Xeon multicore processor. Even when certain SC-violating optimizations

are needed for performance, in particular eager load optimizations, they can be

enabled in an SC-preserving manner by using fine-grained, compiler-directed, dy-

namic race detection. Recovery code inserted by the compiler allows the program

to recover SC behavior when a race is detected dynamically. As such, the detec-
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tion used in the SC-preserving compiler can conservatively report a race, unlike

the detection schemes for drfx and LiteRace. Furthermore, unlike in the other

schemes, the detection is limited to particular memory locations indicated by in-

terference check instructions inserted by the compiler. The hardware mechanism

necessary to implement the targeted race detection needed by the interference

checks is straightforward and similar to existing features in real processors.

To summarize, dynamic data race detection can be used to improve the state

of the art in shared memory concurrent programming without compromising

performance and with reasonable complexity. The key is to relax the require-

ment that the analysis precisely identify all data races in the execution being

monitored. Depending on the way in which this requirement is relaxed, we can

achieve race detection that addresses different challenges in the understanding

of shared memory systems. Furthermore, the relaxed techniques avoid the hefty

performance or complexity penalty normally associated with dynamic data race

detection. I presented three techniques supporting this view and hope the re-

search described in this dissertation eventually helps programmers to more easily

debug and understand their shared memory, concurrent code.
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