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The shared memory paradigm is the de facto standard for programming parallel
server and desktop applications. In this paradigm, a program is made up of a
collection of threads that cooperate to perform a task and communicate by ac-
cessing a shared memory space. In order to exhibit predictable behavior, threads
sharing memory must be carefully synchronized in order to avoid leaving shared
memory in an inconsistent state. A data race is a common flaw in shared mem-
ory concurrent programs which occurs when multiple threads access the same

memory location without synchronization.

Data races lead to insidious bugs that are difficult to find and fix. Modern
optimizing compilers and hardware further complicate the situation by exposing
memory models that do not guarantee sequentially consistent semantics. In such
a setting, a data race can lead to behavior that is unintuitive and difficult to

explain.

Precisely detecting data races at runtime could alleviate these problems. Un-

fortunately, precise data race detection is prohibitively expensive. This disserta-
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tion presents a variety of strategies that can be used to detect only certain races
at runtime with very low overhead while still providing simple, strong guarantees

to programmers of shared memory, concurrent systems.
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CHAPTER 1

Introduction

It has been widely noted that concurrent programming is becoming increasingly
important and prevalent [Sut05]. In the “free lunch” days of the past few decades,
applications have enjoyed steady performance improvements due to the frequency
scaling enabled by Moore’s Law. This is no longer the case, as Moore’s Law
is instead being realized by cramming more processing cores onto a chip. As
a result, applications need to exploit opportunities for parallelism in order to

improve performance and add features.

The shared memory paradigm is the de facto standard for programming par-
allel server and desktop applications. In this paradigm, a program is made up of
a collection of threads that cooperate to perform a task and communicate by ac-
cessing a shared memory space. In order to exhibit predictable behavior, threads
sharing memory must be carefully synchronized in order to avoid leaving shared
memory in an inconsistent state. The béte noire of shared memory concurrent
programming is the data race which occurs when multiple threads access the

same memory location without synchronization.

Data races often lead to insidious bugs that are difficult to isolate and fix.
Even well-tested, critical code can have lurking bugs caused by data races. If one
doubts the potential severity of data races, consider that races in the software
for a radiation therapy machine have resulted in death and injury and that the

massive 2003 blackout in the Northeastern US was in part caused by a data race



[Lev93, Poul.

Bugs that result from data races are difficult to find and fix for many reasons.
To begin with, reasoning about a parallel program is inherently more compli-
cated than reasoning about a sequential program due to the need to consider
multiple flows of control. Furthermore, bugs that occur as a result of improper
synchronization are often intermittent, occurring only on some interleavings of
the threads. Finally, the observed program failure may occur while executing
code far away from the race that caused the bug. Consider the example in Fig-
ure 1.1. It shows a program that contains a data race due to unsynchronized
accesses to the shared variable nonZerolnt, which the programmer intends never
to contain the value zero. Threads 1 and 2 both check to ensure that the variable
contains a value greater than one before decrementing it. However, because no
synchronization mechanism is used to ensure that the decrement occurs atomi-
cally with the check, the interleaving suggested in Figure 1.1 can occur, resulting
in a zero being stored into nonZerolnt. Thread 3, whose code is not buggy, can
then cause a divide-by-zero exception due to the data race between Threads 1 and
2. This simple example demonstrates that data races can cause subtle bugs. As
programs become more complicated, the bugs caused by data races can become

far more difficult to understand.

Optimizing compilers and hardware further complicate the situation by trans-
forming programs that contain data races in ways that produce unintuitive be-
havior. In order to give a well-defined semantics to a concurrent program, a
programming language or hardware platform must specify exactly which writes
to a variable or memory location may be visible to a read that executes on a
different thread or processor. This specification is known as a memory model.

In describing the example above, we implicitly assumed that a multithreaded



int nonZerolnt = 2;

//Thread 1 //Thread 2 //Thread 3 can perform
if (nonZeroInt > 1) //division by zero!
if (nonZerolInt > 1)
nonZerolInt--;
nonZeroInt--;

int tmp = 10/nonZerolnt;

Figure 1.1: A simple data race can cause a subtle bug.

program behaves as if the instructions from all threads are executed one at a
time in some interleaved order, with the instructions from each individual thread
executing in the order specified by the program. We further assumed that a
read of a variable sees the value written by the previous write to that variable
in this interleaving. This corresponds to the memory model known as sequential

consistency |Lam79|, or SC, which is natural for programmers to assume.

In fact, current parallel programming languages, such as Java and C++, and
modern multicore architectures provide memory models that are weaker than SC.
They expose these relaxed models in order to permit common performance opti-
mizations such as common subexpression elimination in the compiler and write
buffers in the hardware. While care is taken to ensure that these optimizations
are not visible to programs that are free of data races, racy programs can ex-
hibit surprising behavior under relaxed memory models. Consider the example
in Figure 1.2(a) which has data races on init and on X. If these are the only
two threads in the program, it seems reasonable to believe that the dereference
of X in line D will never cause a segmentation fault, since on all interleavings of
these threads, D executes only if X has been initialized to a non-null value. In

fact, under the memory models provided by current programming languages and



X* x = null;
X*x x = null; bool init = false;

bool init = false;

// Thread t // Thread u
// Thread t // Thread u B: init = true;
A: x = new X(); C: if(init) C: if (init)
B: init = true; D: x->f++; D: x->f++;

A: x = new X();

(a) (b)

Figure 1.2: Transformation of a racy program can yield unexpected behavior. (a) Original
program. (b) Transformed program.

architectures, instructions A and B may be reordered as shown in Figure 1.2(b).
Thus X could potentially be null when it is dereferenced. Besides complicating
the debugging process, the interaction between unintentional data races and op-
timizations can result in serious safety violations, like causing program control
to jump and begin executing code at an arbitrary location in memory [BAOS|.

Languages generally do provide intuitive, SC semantics when a program is free

of data races [MPAO5, BAOS|.

Because of their serious implications, much effort has been put into research
on preventing or detecting data races. While it would be desirable to prevent
all data races statically, there are many practical obstacles. Most static tech-
niques are limited only to lock-based synchronization and either greatly restrict
programming style or have trouble scaling to large programs. In order to be ap-
plicable to existing programs which use a variety of synchronization primitives,
the detection schemes presented in this dissertation are dynamic. Dynamic tech-

niques are able to accurately detect races in programs that use the full range of



synchronization paradigms and can be applied equally well to large and small
programs. Unfortunately, they can have a crippling effect on performance, slow-
ing programs by 8% or more when precise detection is done in software [FF09|.
Schemes for hardware-assisted dynamic data race detection lower this overhead,

but require complex rollback and re-execution mechanisms in order to avoid false

positives [AHM91, MSQ09].

The research in this dissertation demonstrates that dynamic data race detec-
tion can be used to improve the state of the art in shared memory concurrent
programming without compromising performance and with reasonable complex-
ity. The key is to relax the requirement that the analysis precisely identify all
data races in the execution being monitored. Depending on the way in which
this requirement is relaxed, we achieve race detection that solves different prob-
lems in shared memory systems without the hefty performance or complexity
penalty normally associated with dynamic data race detection. This dissertation
describes three instantiations of this approach. The first, LiteRace, is a testing
and debugging tool. The second and third are both techniques to simplify the
memory models that we expose to programmers of shared memory concurrent

systems. All three support my thesis statement:

Although full dynamic data race detection is impractical, making care-
fully chosen sacrifices in detection precision enables low-overhead mech-
anisms that help programmers understand and debug concurrent pro-

grams.

Chapter 2 presents some background material useful in understanding all
three projects. A chapter on each project follows. Chapter 3 describes LiteRace
in which an intelligent sampling technique is used to greatly reduce the overhead

of traditional, precise race detection while still managing to identify 70% of the



data races exhibited during a program’s execution on average. Chapter 4 de-
scribes the drfx memory model which provides simple, strong guarantees to a
programmer while still allowing most common optimizations. It relies critically
on cooperation between the compiler and the hardware, on the freedom to ter-
minate a program containing a data race with an exception, and on a form of
hardware race detection which is made lightweight by ignoring data races whose
accesses occur sufficiently “far apart”. Despite sacrificing precision by missing
certain races, the detection nevertheless provides the basis for a strong guarantee
to the programmer: normally terminating programs exhibit SC behavior, while
exceptional programs have a data race. Chapter 5 presents research suggesting
that a compiler that preserves sequential consistency, even in the face of data
races, can still output code that performs well. It achieves this using lightweight,
conservative, static and dynamic techniques to establish data race freedom in
areas where optimizations are applied. As in drfx, the dynamic component is
implemented in hardware but is aided by the compiler. Recovery code inserted
by the compiler maintains SC in the event that a race is dynamically detected,
avoiding the need to throw an exception. Finally, Chapter 6 will describe some

related work and Chapter 7 concludes.



CHAPTER 2

Background

This chapter provides details on data races, synchronization, data race detection,
and relaxed memory models. It provides useful context for understanding the

material in the following chapters.

2.1 Data Races

When multiple threads share memory state, they must take care to ensure that
invariants assumed about that state are not violated due to concurrent access
to memory by multiple threads. This is done by using special synchronization
operations to coordinate activities between threads. Common programming lan-
guage synchronization operations include mutual exclusion locks, semaphores,
and condition variables. These high-level synchronization operations are gener-
ally implemented using lower-level machine synchronization operations such as
compare-and-swap. We refer to all memory accesses used to implement synchro-

nization operations as atomic reads and writes.

We now present some informal definitions related to memory accesses, syn-
chronization, and data races. The definitions assume a program made up of
multiple threads that can only communicate through shared memory. They ac-
cess this memory using ordinary reads and writes and atomic reads and writes

which are used for the purposes of synchronization.



Definition 2.1 (Conflicting memory accesses). Two memory accesses conflict if
they access the same memory location, at least one writes to memory, and at

least one is not an atomic access (i.e., part of a synchronization operation).

Definition 2.2 (Racy execution (simultaneous)). A program execution exhibits
a data race if two threads execute conflicting memory accesses simultaneously.

We call such an execution racy.

Definition 2.3 (Racy program). We say that a program contains a data race if
there is some execution of the program that exhibits a data race. We call such a

program racy.

Definition 2.4 (Data-race-free program). A program that does not contain a

data race is data-race-free.

A programmer can ensure that a program is data-race-free by using synchro-
nization operations to ensure that no two threads can access the same memory
at the same time. For instance, the code in Figure 2.1 fixes the buggy code
from Figure 1.1 by using a mutex lock to ensure that the threads never access

nonZerolnt simultaneously. !

Definition 2.2 is quite a strict definition for a racy execution in the sense
that only executions that actually perform accesses simultaneously are considered
to exhibit a data race. In fact, the most commonly used definition for a racy
execution is based on Lamport’s happened-before relation [Lam79] and takes
advantage of the fact that if synchronization operations are not used to enforce

ordering between conflicting accesses on different threads, then the potential for

!Note that inserting sufficient synchronization to ensure data race freedom does not guar-
antee correct maintenance of program invariants. We could make the program from Figure 1.1
data-race-free by surrounding each individual access to nonZerolnt with lock and unlock op-
erations. But, this synchronization would still lead to buggy behavior.



int nonZerolnt = 2;

mutex m;
//Thread 1 //Thread 2 //Thread 3
m.lock(); m.lock(); m.lock();
if (nonZeroInt > 1) if (nonZeroInt > 1) int tmp = 10/nonZerolnt;
nonZeroInt--; nonZeroInt--; m.unlock();
m.unlock(); m.unlock();

Figure 2.1: Locking can be used to ensure data race freedom, enforce atomicity, and maintain
invariants.
simultaneous execution of these accesses exists. We will define the happened-

before relation as follows.

Definition 2.5 (Happened-before). The happened-before (<pp) relation is a
strict (irreflexive) partial order on the operations in a multi-threaded program

defined by the following inductive rules.

(HB1) a <pp b if @ and b are operations from the same sequential thread of

execution and a is executed before b.

(HB2) a <pp b if @ and b are synchronization operations on the same variable
from different threads such that the semantics of the synchronization

dictates that a preceded b in the execution.

(HB3) The relation is transitive, so if a <pp b and b <pp ¢, then a <pp C.

The informal statement of rule HB2 allows us to capture the wide range of
synchronization operations that are used, both high and low level. For instance,
in the case of mutual exclusion locks, we know that during a particular execution,

a particular release of a mutex happened-before the following acquire of the same



mutex. As another example, we know that an atomic write happened-before an

atomic read that sees the value written by that write.

Using this definition of happened-before, we formulate an alternative defini-

tion of a racy execution.

Definition 2.6 (Racy execution (happened-before)). An execution exhibits a
data race if there are conflicting memory accesses a and b such that a [hg b and

b [hsB. We call such an execution racy.

Notice that Definition 2.3 for a racy program relies on the definition of a racy
execution, of which we now have two. In most settings, defining a racy program
using either Definition 2.2 or Definition 2.6 for a racy execution is equivalent
(e.g., |BAOS8]). But from a dynamic detection standpoint, it is most sensible and

effective to use the happened-before-based definition for two reasons:

1. More executions exhibit a race under Definition 2.6 than under Defini-
tion 2.2. Thus we are more likely to find an execution that reveals a data
race in a program. This improves the effectiveness of a dynamic detection

scheme.

2. Determining actual simultaneity in a complex system, such as a multicore

machine, is generally not feasible.

2.2 Happened-before Data Race Detection

In order to perform dynamic, happened-before-based data race detection, a tool
must keep track of the memory accesses and synchronization operations per-
formed by each thread during an execution. It must then construct the happened-

before relation for the execution, and for each pair of conflicting accesses, deter-

10



Time Thread 1 Thread 2 Thread 1 Thread 2

lock L lock L

data race on X!
lock L
un ?;: N o unch,k L \

s

v unlock L unlock L

Figure 2.2: Examples of properly and improperly synchronized accesses to a memory location
X. Edges between nodes represent a happened-before relationship. There is no data race for the
example on the left, because there is a happened-before relationship (due to unlock and lock
operations) between the two writes to the location X. However, for the example on the right,
there is no happened-before relationship between the two writes. Thus, it has a data race.

mine whether or not one happened-before the other. A data race is found if there

are two conflicting accesses neither of which happened-before the other.

Figure 2.2 shows how the happened-before relation is used to find data races.
The edges between instructions indicate a happened-before relationship derived
using rule HB1 or HB2. Transitively, by HB3, if there is a path between any two
nodes, then there is a happened-before relationship between the two nodes. The
example on the left in Figure 2.2 shows two properly synchronized accesses to a
shared memory location. Since the two writes have a path between them, they do
not race with each other. In the example shown on the right in Figure 2.2, thread
2 accesses a shared memory location without proper synchronization. Because
there is no path between the two writes, the two writes are involved in a data

race.

There are two primary sources of overhead for a happened-before-based dy-
namic data race detector implemented in software. One, it needs to instrument
all the memory operations and all the synchronizations operations executed by
the application. This results in a high performance cost due to the increase in the

number of additional instructions executed at runtime. Two, it needs to main-
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tain metadata for each memory location accessed by the application. Most of
the happened-before-based algorithms [Lam78, Net93, AHM91, CMN91, CB01,
DS90, Cru91, Sch89, PK96, RB00, MC91| use vector clocks to keep track of log-
ical timestamps for all memory operations along with the addresses of the loca-
tions they accessed. Maintaining such metadata further slows down the program
execution due to increased memory cost. Even using optimizations suggested
in recent research, happened-before race detection performed in software slows
down the execution of a program by 8% or more on average [FF09|. Mean-
while, proposals for hardware assisted happened-before-based data race detec-
tion [AHM91, MSQO09] suffer from both incompleteness and complexity. The
tracking of metadata in fixed size hardware structures, such as caches, limits
the window in which races are detected. Furthermore, the proposed mechanisms
either detect races at the cache line granularity or by using signature based sum-
maries, both of which lead to false positives. Thus, in order to make the detection
precise, they rely on complex checkpointing schemes in order to roll back and re-

execute when a potential race is encountered.

The detection schemes used in the systems presented in this dissertation avoid
the cost and complexity inherent to precise happened-before-based data race
detection by targeting the detection at particular goals which can be achieved
while sacrificing some precision. In the case of LiteRace, described in the next
chapter, the goal is finding bugs in mature applications. Chapters 4 and 5 detail

approaches where the goal is a simplified memory model.

2.3 Relaxed Memory Models

A memory consistency model (or simply memory model) forms the foundation of

shared-memory multi-threaded programming. It defines the set of possible orders
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in which memory operations can execute and become visible to other threads,
and thereby the possible values a read can return. It provides a contract that
programmers can assume and that compilers and hardware must obey.? While
it is desirable to provide programmers with a simple and strong guarantee about
the behavior of their programs, doing so can reduce the flexibility of compilers
and hardware to perform common optimizations, potentially harming program

performance.

A case in point is sequential consistency (SC) [Lam79|, which requires all
memory operations in an execution of a program to appear to have executed
in a global sequential order consistent with the per-thread program order. This
memory model is arguably the most simple for programmers, since it matches
the intuition of a concurrent program’s behavior as a set of possible thread inter-
leavings where each read from a location sees the value from the previous write
to that location in the interleaving. However, many program transformations
that are sequentially valid (i.e., correct when considered on an individual thread
in isolation) can potentially violate SC in the presence of multiple threads. For
example, reordering two accesses to different memory locations in a thread can
violate SC since another thread could “view” this reordering via concurrent ac-
cesses to those locations (Figure 1.2 demonstrates such a transformation). As
a result, SC precludes the use of common compiler optimizations (code motion,
loop transformations, etc.) and hardware optimizations (out-of-order execution,
store buffers, lockup-free caches, etc.). In order to allow these optimizations,

hardware architectures and programming languages provide a variety of relaxed

2The term memory model is used to describe both the contract between the programmer and
the programming language and the contract between the compiler (or programming language
implementation) and the hardware. The compiler, then, provides certain guarantees to the
programmer that it implements using the guarantees provided to it by the underlying hardware
architecture.
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memory models which are weaker (i.e., provide weaker guarantees) than SC.

2.4 Interaction of Memory Models and Data Races

Weak memory models allow relaxations of memory access ordering, but they must
also provide mechanisms to enforce ordering when program behavior requires it.
At the programming language level, this mechanism is usually provided in the
form of synchronization operations (including high-level mechanisms like locks as
well as individual memory accesses used for synchronization which are identified
using qualifiers such as volatile in Java [MPAO5] and atomic in C++ [BAO0S|).
Hardware provides mechanisms such as memory fences and atomic operations

that compilers use to implement synchronization operations.

In recent years, there have been significant efforts to bring together language,
compiler, and hardware designers to standardize memory models for mainstream
programming languages. The consensus has been around memory models based
on the data-race-free-0 (DRF0) model [AH90|, which attempts to strike a mid-
dle ground between simplicity for programmers and flexibility for compilers and
hardware. In the DRFO model, compilers and hardware are restricted from per-
forming certain optimizations and reordering across synchronization operations
while programmers are guaranteed SC behavior for all properly synchronized pro-
grams (i.e., data-race-free programs).® Unlike the full SC model, compilers and
hardware are still able to perform common, sequentially valid optimizations in

areas of code that do not contain synchronization operations.

The DRF0 model provides a simple and strong guarantee for data-race-free

3In DRFO models, the definition of a data-race-free program requires the absence of a data
race in all SC executions of the program. In this dissertation, it is also assumed that Defini-
tions 2.2 through 2.6 need only consider sequentially consistent executions.
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programs, but it does not specify any semantics for programs that contain data
races. While such programs are typically considered erroneous, data races are
easy for programmers to accidentally introduce and are difficult to detect. The

DRFO0 model therefore poses two important problems for programmers:

* Since a racy execution can behave arbitrarily in DRFO0, it can violate desired
safety properties. For example, Boehm and Adve show how a sequentially
valid compiler optimization can cause a program to jump to arbitrary code

in the presence of a data race [BAOS].

e Debugging an erroneous program execution is difficult under the DRFO0
model because the programmer must always assume that there may have
been a data race. Therefore, it may not be sufficient to reason about the
execution using the intuitive sequential consistency model in order to un-

derstand and identify the error.

The recently proposed C++ memory model C++0x [BAOS§| is based on the
DRFO0 model and shares these shortcomings. The Java memory model [MPAO5|
addresses the first problem above by providing a semantics for racy programs
which is weaker than SC but still strong enough to ensure a useful form of safety.
However, this weaker semantics is subtle and complex, so the debuggability prob-

lem described above is not greatly improved.

Researchers have previously proposed the use of dynamic data race detection
to halt execution when it would become undefined by the memory model [AHM91,
Boe09, EQTO07]. But due to the cost and complexity discussed in Section 2.2,
the use of precise data race detection for the purpose of preventing memory
model effects from confounding programmers is impractical, especially consider-

ing that the reason for providing a relaxed memory model is to enable perfor-
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mance optimization. Chapters 4 and 5 detail novel schemes for using imprecise,
hardware-assisted race detection which is targeted and efficient to achieve sim-

plified memory models with good performance.
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CHAPTER 3

LiteRace

Like most prior work in dynamic data race detection, LiteRace aims to find bugs.
In particular, its goal is to find data races with very low overhead so that it can
be run on a large number of executions. Ideally, the instrumentation would be so
lightweight that it could be used during beta testing of a product. The prohibitive
slowdown of existing detectors limits the amount of testing that can be done for
a given amount of time and resources. Also, users shy away from intrusive tools
that do not allow them to test realistic program executions. A second goal of
LiteRace is to provide this lightweight detection while never reporting a false
data race. Data races are very difficult to debug and triage. So false positives

severely limit the usability of a tool from a developer’s perspective.

As discussed earlier, precise data race detectors have an extremely high run-
time overhead, slowing down applications by 8% or more on average [FF(09].!
(Intel’s Thread Checker [SBMO06], incurs a performance overhead on the order of

200%.2) Such a slowdown is unacceptable for LiteRace, given its goal of being

!Data race detectors based on the lockset algorithm [SBN97] or a hybrid of lockset and
happened-before detection achieve better performance at the cost of precision. More details
are discussed in Chapter 6.

2FastTrack manages to get an 8% overhead both by using novel improvements in the
happened-before detection algorithm and also by targeting Java programs which can be in-
strumented using a specialized virtual machine. Intel’s Thread Checker, on the other hand, is
capable of instrumenting and finding races in arbitrary x86 binaries written in any language
and using all types of synchronization.
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usable during beta testing of applications. In order to achieve acceptable speed,

some sacrifice will have to be made in detection precision.

Rather than analyzing every memory access in a program, LiteRace uses
sampling to significantly reduce the cost of dynamic data race detection. While
a sampling approach may seem unlikely to find many data races (after all, most
memory accesses do not participate in a race and both racing accesses need to be
analyzed), experimental results show that a carefully chosen sampling algorithm
can be effective. The algorithm is based on the cold-region hypothesis that data
races are likely to occur when a thread is executing a “cold” code region (code
that it has not executed frequently). Data races that occur in hot regions of
well-tested programs either have already been found and fixed, or are likely to
be benign. The adaptive sampler starts off by sampling all the code regions at
100% sampling rate. But every time a code region is sampled, its sampling rate
is progressively reduced until it reaches a lower bound. Thus, cold regions are
sampled at a very high rate, while the sampling rate for hot regions is adaptively
reduced to a very small value. In this way, the adaptive sampler avoids slowing

down the performance-critical hot regions of a program.

The research presented in this chapter includes the following important con-

tributions:

* LiteRace demonstrates that the technique of sampling can be used to signif-
icantly reduce the runtime overhead of a data race detector without intro-
ducing any additional false positives. It is the first data race detection tool
that uses sampling to reduce the runtime performance cost. By permitting
users to adjust the sampling rate to provide a bound on the performance
overhead, LiteRace makes it feasible to enable data race detection even

during beta testing of industrial applications.
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e Several sampling strategies are explored. The results show that a naive
random sampler is inadequate for maintaining a high detection rate while
using a low sampling rate. A more effective adaptive sampler that heavily

samples the first few executions of a function in each thread is proposed.

e Animplementation of LiteRace using the Phoenix analysis framework [Mica|
is discussed. The tool was used to analyze Microsoft programs such as Con-
cRT and Dryad, open-source applications such as Apache and Firefox, and
two synchronization-heavy micro-benchmarks. The results show that, on
average, by logging less than 2% of memory operations, LiteRace can detect

nearly 70% of data races in a particular execution.

The rest of this chapter is organized as follows. §3.1 presents an overview of
a sampling based approach to reduce the runtime cost of a data race detector.
§3.2 details the implementation of the race detector. Experimental results are

presented in §3.3 and §3.4 concludes.

3.1 LiteRace Overview

This section presents a high-level overview of LiteRace. The implementation

details together with various design trade-offs are discussed in §3.2.

3.1.1 Case for Sampling

The key premise behind LiteRace is that sampling techniques can be effective for
data race detection. While a sampling approach has the advantage of reducing the
runtime overhead, the main trade-off is that it can miss data races. This trade-

off is acceptable for the following reasons. First, dynamic techniques cannot find
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all data races in the program anyway. They can only find data races on thread
interleavings and paths explored at runtime. Furthermore, a sampling-based
detector, with its low overhead, would encourage users to widely deploy it on
many more executions of the program, possibly achieving better coverage. Thus
as long as the sampling technique doesn’t miss too many races, it could prove

useful.

Another key advantage is that sampling techniques provide a useful knob
that allow users to trade runtime overhead for coverage. For instance, users can
increase the sampling rate for interactive applications that spend most of their
time waiting for user inputs. In such cases, the overhead of data race detection

is likely to be masked by the I/O latency of the application.

3.1.2 Events to Sample
Data race detection requires logging the following events at runtime.

* Synchronization operations are logged along with a logical timestamp that

reflects the happened-before relation between these operations.

e Reads and writes to memory are logged in the program order, logically
happening at the timestamp of the preceding synchronization operation of

the same thread.

These logs can then be analyzed offline or during program execution (§3.2.4).
The above information allows a data race detector to construct the happened-
before ordering between synchronization operations and the memory operations
executed in different threads. A data race is detected if there is no synchronization
ordering between two accesses to the same memory location, and at least one of

them is a write.
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Figure 3.1: Failing to log a synchronization operation results in loss of happened-before edges.
As a result, a false data race on X would be reported.

Clearly instrumenting code to log every memory access would impose a signif-
icant overhead. By sampling only a fraction of these events, overhead is reduced
in two ways. First, the execution of the program is much faster because of the
reduced instrumentation. Second, the data race detection algorithm needs to

process fewer events making it faster as well.

While sampling can reduce runtime overhead, choosing which events to log
and which events not to log must be done carefully. In particular, LiteRace
must log all the synchronization events in order to avoid reporting false data
races. Figure 3.1 shows why this is the case. Synchronization operations induce
happened-before orderings between program events. Any missed synchronization
operation can result in missing edges in the happened-before graph. The data
race detection algorithm will therefore incorrectly report false races on accesses
that are otherwise ordered by the unlogged synchronization operations. To avoid
such false positives, it is necessary to log all synchronization operations. How-
ever, for most applications, the number of synchronization operations is small
compared to the number of instructions executed in a program. Thus, logging

all synchronization operations does not cause significant performance overhead.
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Memory accesses can, however, be selectively sampled. If LiteRace chooses
not to log a particular memory access, it may miss a data race involving that
access (a false negative). As discussed in §3.1.1, this is an acceptable trade-
off. But, a good strategy for selecting which memory accesses to log is essential
in order not to miss too many races. A data race involves two accesses and a
sampler needs to successfully log both of them to detect the race. A sampler that

accomplishes this is described below.

3.1.3 Sampler Granularity

In LiteRace, every function body is a unit of sampling. A static instrumentation
tool creates two copies for each function as shown in Figure 3.2. The instru-
mented function logs all the memory operations (their addresses and program
counter values) and synchronization operations (memory addresses of the syn-
chronization variables along with their timestamps) executed in the function.
The un-instrumented copy of the function logs only the synchronization opera-
tions. Before entering a function, the sampler (represented as dispatch check in
Figure 3.2) is executed. Based on the decision of the sampler, either the instru-
mented copy or the un-instrumented copy of the function is executed. As the
dispatch check happens once per function call, it is essential that the dispatch

code is as efficient as possible.

3.1.4 Thread Local Adaptive Bursty Sampler

There are two requirements for a sampling strategy. Ideally, a sampling strategy
should maintain a high data race detection rate even with a low sampling rate.
Also, it should enable an efficient implementation of the dispatch check that

determines if a function should be sampled or not. A naive random sampler does
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not meet these requirements as shown in §3.3.

The LiteRace sampler is an extension of the adaptive bursty sampler [HC04],
previously shown to be successful for detecting memory leaks. An adaptive bursty
sampler starts off by analyzing a code region at a 100% sampling rate, which
means that the sampler always runs the instrumented copy of a code region the
first time it is executed. Since the sampler is bursty, when it chooses to run the
instrumented copy of a region, it does so for several consecutive executions. The
sampler is adaptive in that after each bursty sample, a code region’s sampling

rate is decreased until it reaches a lower bound.

To make the adaptive bursty sampler effective for data race detection, the
above algorithm is modified to make it “thread local”. The rationale is that, at
least in reasonably well-tested programs, data races occur when a thread executes
a cold region. Data races between two hot paths are unlikely — either such a data
race is already found during testing and fixed, or it is likely to be a benign or
intentional data race. In a “global” adaptive bursty sampler [HC04], a particular
code region can be considered “hot” even when a thread executes it for the first
time. This happens when other threads have already executed the region many
times. LiteRace avoids this by maintaining separate sampling information for
each thread, effectively creating a “thread local” adaptive bursty sampler. The
experiments in §3.3 show that this extension significantly improves the detection

rate.

Note that a thread-local adaptive sampler can also find some data races that
occur between two hot regions or between a hot and a cold region. The reason is
that LiteRace’s adaptive sampler initially assumes that all the regions are cold,
and the initial sampling rate for every region is set to 100%. Also, the sampling

rate for a region is never reduced below a lower bound. As a result, the sampler,
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Figure 3.2: LiteRace Instrumentation.

even while operating at a lower sampling rate, might still be able to gather enough
samples for a frequently executed hot region. Thus LiteRace’s adaptive sampler
is still able to find some data races between hot-hot regions and hot-cold regions

in a program.

3.2 LiteRace Implementation

This section describes the implementation details of LiteRace.

3.2.1 Instrumenting the Code

LiteRace is based on static instrumentation of x86 binaries and does not re-
quire the source code of the program. It was built by using the Phoenix [Mical
compiler and analysis framework to parse the x86 executables and perform the
transformation depicted in Figure 3.2. LiteRace creates two versions for each
function: an instrumented version that logs all the memory operations and an
uninstrumented version that does not log any memory operation. As explained
in §3.1, avoiding false positives requires instrumenting both the instrumented and
the uninstrumented versions to log synchronization operations. Then, LiteRace
inserts a dispatch check at every function entry. This check decides which of the

two versions to invoke for a particular call of the function at runtime.

In contrast to prior adaptive sampling techniques [HC04], LiteRace maintains
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profiling information per thread. For each thread, LiteRace maintains a buffer in
the thread-local storage that is allocated when the thread is created. This buffer
contains two counters for each instrumented function: the frequency counter
and the sampling counter. The frequency counter keeps track of the number
of times the thread has executed a function and determines the sampling rate
to be used for the function (a frequently executed function will be sampled at
a lower sampling rate). The sampling counter is used to determine when to
sample the function next. On function entry, the dispatch check decrements
the sampling counter corresponding to that function. If the sampling counter’s
value is non-zero, which is the common case, the dispatch check invokes the
uninstrumented version of the function. Once the sampling counter reaches zero,
the dispatch check invokes the instrumented version of the function for the next
several invocations, depending on the configured burst length. After the last
invocation in the sampled burst, the dispatch check code sets the sampling counter
to a new value based on the current sampling rate for the function as determined

by the frequency counter.

As the dispatch check is executed on every function entry, it is important to
keep the overhead of this check low. To avoid the overhead of calling standard
APIs for accessing thread-local storage, LiteRace implements an inlined version
using the Thread Execution Block [Micb] structure maintained by the Windows
OS for each thread. Also, the dispatch check uses a single register edx for its
computation. The instrumentation tool analyzes the original binary for the func-
tion to check if this register and the eflags register are live at function entry,
and injects code to save and restore these registers only when necessary. In the
common case, LiteRace’s dispatch check involves 8 instructions with 3 memory
references and 1 branch (that is mostly not taken). The runtime overhead of the

dispatch check is measured in the experiments described in §3.3.

25



Table 3.1: How LiteRace logs synchronization operations.

| Synchronization Op | SyncVar | Add’l Sync? |
Lock / Unlock Lock Object Address No
Wait / Notify Event Handle No
Fork / Join Child Thread Id No
Atomic Machine Ops Target Memory Addr. Yes

3.2.2 Tracking Happened-before

As mentioned earlier, avoiding false positives requires accurate happened-before
data. It is trivial to ensure that the happened-before relation for events of the
same thread is correctly recorded since the logging code executes on the same
thread as the events being logged. Correctly capturing the happened-before data
induced by the synchronization operations between threads in a particular pro-

gram execution requires more work.

For each synchronization operation, LiteRace logs a SyncVar that uniquely
identifies the synchronization object and a logical timestamp that identifies the
order in which threads perform operations on that object. Table 3.1 shows how
LiteRace determines the SyncVar for various synchronization operations. For
instance, LiteRace uses the address of the lock object as a SyncVar for lock
and unlock operations. The logical timestamp in the log should ensure that if
a and b are two operations on the same SyncVar and a <p, b, then a has a
smaller timestamp than b. The simplest way to implement the timestamp is to
maintain a global counter that is atomically incremented at every synchroniza-
tion operation. However, the contention introduced by this global counter can
dramatically slowdown the performance of LiteRace-instrumented programs on
multi-processors. To alleviate this problem, LiteRace uses one of 128 counters

uniquely determined by a hash of the SyncVar for the logical timestamp.

To ensure the accuracy of the happened-before relation, it is important that
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LiteRace computes and logs the logical timestamp atomically with the synchro-
nization operation performed. For some kinds of synchronization, the semantics
of the operation can be leveraged to guarantee this. For instance, by logging
and incrementing the timestamp after a lock instruction and before an unlock
instruction, it is guaranteed that an unlock operation on a particular mutex will
have a smaller timestamp than a subsequent lock operation on that same mutex
in another thread. For wait/notify operations, LiteRace increments and logs the
timestamp before the notify operation and after the wait operation to guarantee

consistent ordering. A similar technique is used for fork/join operations.

For some synchronization operations, however, LiteRace is forced to add addi-
tional synchronization to guarantee atomic timestamping. For example, consider
a target program that uses atomic compare-and-exchange instructions to imple-
ment its own locking. Since LiteRace doesn’t know if a particular compare-and-
exchange is acting as a “lock” or as an “unlock”; it introduces a critical section to
ensure that the compare-and-exchange and the logging and incrementing of the
timestamp are all executed atomically. Without this, LiteRace could generate
timestamps for these operations that are inconsistent with the actual order. This
additional effort is absolutely essential in practice, and running LiteRace without
this additional synchronization results in hundreds of false data races for some

benchmarks.

3.2.3 Handling Dynamic Allocation

Another subtle issue is that a dynamic data race detector should account for the
reallocation of the same memory to a different thread. A naive detector might
report a data race between accesses to the reallocated memory with accesses

performed during a prior allocation. To avoid such false positives, LiteRace
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additionally monitors all memory allocation routines and treats them as addi-
tional synchronization performed on the memory page containing the allocated

or deleted memory.

3.2.4 Analyzing the Logs

The LiteRace profiler generates a stream of logged events during program execu-
tion. The current implementation writes these events to the disk and processes
them offline to find data races. The main motivation for this design decision was
to minimize perturbation of the runtime execution of the program. It would also
be possible to use an online detector, possibly avoiding a runtime slowdown by
using an idle core in a many-core processor. The logged events are processed us-
ing a standard implementation [SBMO6]| of the happened-before based data race
detector described in §2.2.

3.3 Results

This section presents experimental results from running LiteRace. §3.3.1 de-
scribes the benchmarks and §3.3.2 explains the samplers that are evaluated. In
§3.3.3, the effectiveness of the various samplers in detecting data races is explored.
The results show that LiteRace’s thread-local adaptive sampler achieves a high
data race detection rate, while maintaining a low sampling rate. §3.3.4 discusses
the performance and log size overhead of the thread-local adaptive sampler im-
plemented in LiteRace, and compares it to an implementation that logs all the

memory operations. All experiments were run on a Windows Server 2003 system

with two dual-core AMD Opteron processors and 4 GB of RAM.
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3.3.1 Benchmarks

The four industrial-scale concurrent programs listed in Table 3.2 were used as
benchmarks. Dryad is a distributed execution engine, which allows programmers
to use a computing cluster or a data center for running coarse-grained data-
parallel applications [IBYO07]. The test harness used for Dryad was provided by
its lead developer. The test exercises the shared-memory channel library used
for communication between the computing nodes in Dryad. Experiments were
run with two versions of Dryad, one with the standard C library statically linked
in (referred to as Dryad-stdlib), and the other without. For the former, LiteR-
ace instruments all the standard library functions called by Dryad. The second
benchmark, ConcRT, is a concurrent run-time library that provides lightweight
tasks and synchronization primitives for developing data-parallel applications. It
is part of the parallel extensions to the .NET framework [Duf07|. Two different
test inputs for ConcRT were used: Messaging, and Explicit Scheduling. These are
part of the ConcRT concurrency test suite. Apache, an open-source HT'TP web
server, is the third benchmark. Overhead and effectiveness of LiteRace are evalu-
ated for two different Apache workloads (referred to as Apache-1 and Apache-2).
The first consists of a mixed workload of 3000 requests for a small static web page,
3000 requests for a larger web page, and 1000 CGI requests. The second consists
solely of 10,000 requests for a small static web page. For both workloads, up to 30
concurrent client connections are generated by Apache’s benchmarking tool. The
final benchmark is Firefox, the popular open-source web browser. The overhead
and sampler effectiveness for the initial browser start-up (Firefox-Start) and for
rendering an html page consisting of 2500 positioned DIVs (Firefox-Render) are

measured.
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Table 3.2: Benchmarks used to evaluate LiteRace. The number of functions and the binary
size includes executable and any instrumented library files.

| Benchmarks | Description | # Fns | Bin. Size |
Dryad Library for distributed 4788 2.7 MB
data-parallel apps
ConcRT .NET Concurrency runtime 1889 0.5 MB
framework
Apache 2.2.11 Web server 2178 0.6 MB
Firefox 3.6alpre | Web browser 8192 1.3 MB

Table 3.3: Samplers evaluated along with their short names used in figures, short descriptions,
and effective sampling rates averaged over the benchmarks studied. The weighted average uses
the number of memory accesses in each benchmark application as a weight.

/ per thread are NOT sam-
pled, all remaining calls are
sampled

Short Weighted | Average

Sampling Strategy Name Description Avg ESR ESR

Thread-local Adaptive | TL-Ad Adaptive  back-off  per 1.8% 8.2%
function / per thread
(100%,10%,1%,0.1%);
bursty

Thread-local Fixed 5% | TL-Fx Fixed 5% per function / per 5.2% 11.5%
thread; bursty

Global Adaptive G-Ad Adaptive back-off per func- 1.3% 2.9%
tion globally (100%, 50%,
25%, ... , 0.1%); bursty

Global Fixed G-Fx Fixed 10% per function glob- 10.0% 10.3%
ally; bursty

Random 10% Rnd10 Random 10% of dynamic 9.9% 9.6%
calls chosen for sampling

Random 25% Rnd25 Random 25% of dynamic 24.8% 24.0%
calls chosen for sampling

Un-Cold Region UCP First 10 calls per function 98.9% 92.3%

30




ETL-Ad TL-Fx =G-Ad G-Fx ®Rnd10 ®Rnd25 ucp

100%

\,
a
X

% of Data Races
Detected

50%
25%
0%
Dryad Channel Dryad channel ConcRT ConcRT Apache 1 Apache 2 Firefox Start ~ Firefox Render Average Weighted Avg
+ stdlib Messaging Explicit Eff Sampling
Scheduling Rate

Figure 3.3: Proportion of static data races found by various samplers. The figure also shows the
weighted average effective sampling rate for each sampler, which is the percentage of memory
operations logged (averaged over all the benchmarks).

3.3.2 Evaluated Samplers

The samplers that are evaluated are listed in Table 3.3. The “Short Name” column
shows the abbreviation that is used for the samplers in the figures throughout the
rest of this section. The table also shows the effective sampling rate (ESR) for
each sampler. The effective sampling rate is the percentage of memory operations
that are logged by a sampler. Two averages for effective sampling rate are shown.
One is just the average of the effective sampling rates over the nine benchmark-
input pairs described in §3.3.1. The other is the weighted average, where the
weight for a benchmark-input pair is based on the number of memory operations

executed at runtime.

LiteRace’s thread-local adaptive sampler is the first one listed in the table. For
each thread and for each function, this sampler starts with a 100% sampling rate
and then progressively reduces the sampling rate until it reaches a base sampling
rate of 0.1%. To understand the utility of this adaptive back-off, a thread-local
fixed sampler is evaluated. It uses a fixed 5% sampling rate per function per
thread. The next two samplers are “global” versions of the two samplers that
were just described. The adaptive back-off for the “global” sampler is based on

the number of executions of a function, irrespective of the calling thread. This
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Figure 3.4: Various samplers’ detection rate for rare (on the top) and frequent (on the bottom)
static data races.
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global adaptive sampler is similar to the one used in SWAT [HC04|, except that
it uses a higher sampling rate. Even with a higher rate, the experimental results
show that the global samplers are not as effective as the thread-local samplers in
finding data races. The four samplers mentioned thus far are “bursty”. That is,
when they decide to sample a function, they do so for ten consecutive executions
of that function. The next two samplers are based on random sampling and are
not bursty. Each function call is randomly sampled based on the chosen sampling
rate (10% and 25%). The final sampler evaluates the cold-region hypothesis by
logging only the “uncold” regions. That is, it logs all but the first ten calls of a

function per thread.

3.3.3 E[edtiveness of Samplers Comparison

In this section, the different samplers are compared and the thread-local adaptive
sampler is shown to be the most effective of all the samplers evaluated. In the
evaluation, the data races detected by the tool are grouped based on the pair of
instructions (identified by the value of the program counter) that participate in
the data race. Each group is refered to as a static data race. From the user’s
perspective, a static data race roughly corresponds to a possible synchronization
error in the program. Table 3.4 shows the total number of static data races
exhibited during an execution for each benchmark-input pair. The table also
distinguishes between rare and frequent static data races, based on the number

of times a particular static data race manifests at runtime.

To have a fair comparison, different samplers need to be evaluated on the
same thread interleaving of a program. However, two different executions of a
multi-threaded program are not guaranteed to yield the same interleaving even

if the input is the same. To compare the effectiveness of the various samplers
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in detecting data races accurately, a modified version of LiteRace that performs
full logging was created. It logs all synchronization and all memory operations.
In addition to full logging, the “dispatch check” logic for each of the evaluated
samplers is executed upon function entry. The modified detector keeps track
of whether or not each of the samplers would have logged a particular memory

operation.

By performing data race detection on the complete log, all the data races
that happened during the program’s execution are found. Data race detection
is then performed on the subset of the memory operations that a particular
sampler would have logged. Then, by comparing the results with those from the
complete log, the detection rate (proportion of data races detected by each of
the samplers) is calculated. Note, however, that the results for performance and
space overhead in §3.3.4 use the unmodified version of LiteRace with only the

thread-local adaptive sampler turned on.

Each application was instrumented using the modified version of LiteRace
described above. The instrumented application was run three times for each
benchmark. The reported detection rate for each benchmark is the average of
the three runs. The results for overall data race detection rate are shown in
Figure 3.3. The results are grouped by benchmarks with a bar for each sampler
within each group. The weighted average effective sampling rate for each of the
samplers (discussed in §3.3.2) is also shown as the last group. A sampler is
effective if it has a very low effective sampling rate along with a high data race
detection rate. Notice that the proposed LiteRace sampler (TL-Ad) achieves this,
as it detects about 70% of all data races by sampling only 1.8% of all memory
operations. The non-adaptive fixed rate thread-local sampler also detects about

72% of data races, but its effective sampling rate is 5.2% (more than 2.5x higher
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than the TL-Ad sampler). Clearly, among the thread-local samplers, the adaptive

sampler is better than the fixed rate sampler.

The two thread-local samplers outperform the two global samplers. Though
the global adaptive sampler logs only 1.3% of memory operations (comparable to
the thread-local adaptive sampler), it detects only about 22.7% of all data races
(about 3x worse than TL-Ad). The global fixed rate sampler logs 10% of memory

operations, and still detects only 48% of all data races.

All the four samplers based on cold-region hypothesis are better than the two
random samplers. For instance, a random sampler finds only 24% of data races,

but logs 9.9% of all memory operations.

Another notable result from the figure is that of the “Un-Cold Region” sam-
pler, which logs all the memory operations except those executed in the cold-
regions (§3.3.2). It detects only 32% of all data races, but logs nearly 99% of all

memory operations. This result validates the cold-region hypothesis.

Table 3.4: Number of static data races found for each benchmark-input pair (median over
three dynamic executions), while logging all the memory operations. These static data races
are classified into rare and frequent categories. A static data race is rare, if it is detected less
than 3 times per million non-stack memory instructions during any execution of the program.

| Benchmarks | # races found | # Rare | # Freq |
Dryad Channel + stdlib 19 17 2
Dryad Channel 8 3 5
Apache-1 17 8 9
Apache-2 16 9 7
Firefox Start 12 5 7
Firefox Render 16 10 6
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3.3.3.1 Rare Versus Frequent Data Race Detection

The results so far demonstrate that a thread-local adaptive sampler finds about
70% of all static data races. If a static data race occurs frequently during an
execution, then it is likely that many sampling strategies would find it. It is
more challenging to find data races that occur rarely at run-time. To quantify
this, all of the static data races that were detected (using the full, unsampled
log) were classified based on the number of times that a static data race occured
in an execution. Those racing instruction pairs that occurred fewer than 3 times
for each million non-stack memory instructions executed are classified as rare.
The rest are considered frequent. The number of rare and frequent data races for
each benchmark-input pair is shown in Table 3.4 (some of the data races found
could be benign). The various samplers’ data race detection rates for these two

categories are shown in Figure 3.4.

Most of the samplers perform well for the frequent data races. But, for in-
frequently occurring data races, the thread-local samplers are the clear winners.

Note that the random sampler finds very few rare data races.

3.3.4 Analysis of Overhead

§3.3.3 presented results showing that the thread-local adaptive sampler performs
well in detecting data races for a low sampling rate. Here the performance and
log size overhead of thread-local adaptive sampler implemented in LiteRace is
described. The results show that it incurs about 28% performance overhead for
the benchmarks when compared to no logging, and is up to 25 times faster than

an implementation that logs all the memory operations.

Apart from the benchmarks used in §3.3.3, two additional compute and syn-
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Table 3.5: Performance overhead of LiteRace’s thread-local adaptive sampler and full logging
implementation when compared to the execution time of the uninstrumented application. Log
size overhead in terms of MB/s is also shown.

LiteRace Full Logging
Baseline | LiteRace Full Logging Log Size Log Size
Benchmarks Exec Time | Slowdown Slowdown (MBY/s) (MB/s)
LKRHash 3.3s 2.4x 14.7x 154.5 1936.3
LFList 1.7s 2.1x 16.1x 92.5 751.7
Dryad-stdlib 6.7s 1x 1.8x 1.2 12.8
Dryad 6.6s 1x 1.14x 1.1 2.6
ConcRT Messaging 9.3s 1.03x 1.08x 0.7 10.6
ConcRT Explicit Scheduling 11.5s 2.4x 9.1x 4.6 109.7
Apache-1 17.0s 1.02x 1.4x 1.2 41.9
Apache-2 3.0s 1.04x 3.2x 4.0 260.7
Firefox Start 1.8s 1.44x 8.89x 7.4 107.0
Firefox Render 0.61s 1.3x 33.5x 19.8 731.1
| Average | 6.15s | 1.47x | 9.09x | 28.6 | 396.5 |
| Average (w/o Microbench) | 7.06s | 1.28x | 7.51x | 5.0 | 159.6 |

chronization intensive micro-benchmarks were used for the performance study.
LKRHash is an efficient hash table implementation that uses a combination of
lock-free techniques and high-level synchronizations. LFList is an implementa-
tion of a lock-free linked list available from [Bus|. LKRHash and LFList execute
synchronization operations more frequently than the other real world benchmarks
we studied. These micro-benchmarks are intended to test LiteRace’s performance

in the adverse circumstance of having to log many synchronization operations.

To measure the performance overhead, each of the benchmarks was run ten
times for each of four different configurations. The first configuration is the
baseline, uninstrumented application. Each of the remaining three configurations
adds a different portion of LiteRace’s instrumentation overhead: the first adds
just the dispatch check, the second adds the logging of synchronization operations,
and the final configuration is the complete LiteRace instrumentation including
the logging of the sampled memory operations. By running the benchmarks in

all of these configurations, the cost attributable to the different components of
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Figure 3.5: LiteRace slowdown over the uninstrumented application.

LiteRace can be measured.

Figure 3.5 shows the cost of using LiteRace on the various benchmarks and
micro-benchmarks. The bottom portion of each vertical bar in Figure 3.5 repre-
sents the (normalized) time it takes to run the uninstrumented, baseline applica-
tion. The overhead incurred by the various components of LiteRace are stacked
on top of that. As expected, the synchronization intensive micro-benchmarks
exhibit the highest overhead, between 2% and 2.5%, since all synchronization op-
erations must be logged to avoid false positives. The ConcRT Scheduling test also
has a high proportion of synchronization operations and exhibits overhead sim-
ilar to the micro-benchmarks. The more realistic application benchmarks show
modest performance overhead of 0% for Dryad, 2% to 4% for Apache, and 30%
to 44% for Firefox.

In order to evaluate the importance of sampling memory operations in or-
der to achieve low overhead, the performance of logging all the synchronization
and memory accesses was measured. Unlike the LiteRace implementation, this
full-logging implementation did not have the overhead for any dispatch checks
or cloned code. Table 3.5 compares the slowdown caused by LiteRace to the

slowdown caused by full logging. The sizes of the log files generated for these two
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implementations are also shown in terms of MB/s. LiteRace performs better than
full logging in all cases. The performance overhead over baseline when averaged
over realistic benchmarks is 28% for the LiteRace implementation, while the full

logging implementation incurs about 7.5% performance overhead.

The generated logs, as expected, are also much smaller in LiteRace. On
average, LiteRace generated logs at the rate of 5.0 MB/s, whereas a full logging

implementation generated about 159.6 MB/s.

3.4 LiteRace Summary

Because data races often indicate bugs in complex, multithreaded programs, dy-
namic data race detection can be a great boon to programmers and testers. But
the high overhead of precise detectors hinders adoption and limits the number
of executions on which detection can be performed, thus limiting the number of

bugs which are uncovered.

By making carefully chosen sacrifices, LiteRace makes dynamic race detection
for the purposes of bug finding practical. By choosing to focus effort on per-thread
cold paths, LiteRace achieves a high race detection rate with a low sampling rate.
By choosing to pay the cost of logging all synchronization operations, LiteRace
avoids false positives which could cost testers and programmers precious time.
The thread-local adaptive sampler manages to find nearly 70% of data races by
sampling only 2% of memory accesses. This translates into low overhead (28% on
average in the evaluated benchmarks) which makes running detection on a large

number of executions possible.
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CHAPTER 4

DRFXx

The previous chapter discussed LiteRace which uses dynamic race detection to
uncover potential bugs in programs. Data races can cause bugs in programs
even when they are run using sequentially consistent semantics. However, as
discussed previously, compilers and hardware actually provide memory models
that are weaker than SC, and under these models programs cannot be intuitively

reasoned about as an interleaving of the instructions from the different threads.

As discussed in Chapter 2, consensus has been building around a class of pro-
gramming language memory models known as DRF0 which attempt to balance
ease of programming with opportunities for compiler and hardware optimization.
While these models provide programmers with a simple and strong guarantee for
data-race-free programs (the observed behavior will be sequentially consistent),
programmers are given much weaker guarantees, or even the possibility of com-
pletely arbitrary behavior, for programs with data races. This undermines the
safety of the program as well as the ease of debugging. Furthermore, proving
the correctness and safety of various compiler and hardware optimizations under
some DRF0 memory models continues to be a challenge [SA08, CKS07|. The
research in this chapter demonstrates how efficient, imprecise data race detec-
tion can be used to support a new memory model called drfx that solves these

problems.
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4.1 Introduction to the drf: Memory Model

The drfx memory model uses an imprecise form of data race detection in order to
provide straightforward guarantees to the programmer while still allowing most
standard compiler and hardware optimizations. Despite missing some data races,
the detection used provides the basis for a strong guarantee. The technique is
inspired by the observation of Gharachorloo and Gibbons |[GG91| that to provide
a useful guarantee to programmers, it suffices to detect only the data races that
cause SC violations, and that such detection can be much simpler than full-fledged

race detection.

The drfx model introduces the notion of a dynamic memory model (MM)
exception which halts a program’s execution. drfx guarantees two key properties

for any program P:

e DRF: If P is data-race free then every execution of P is sequentially con-

sistent and does not raise an MM exception.

e Soundness: If sequential consistency is violated in an execution of P,

then the execution eventually terminates with an MM exception.

These two properties allow programmers to safely reason about all programs,
whether race-free or not, using SC semantics: any program’s execution that does
not raise an MM exception is guaranteed to be SC. On the other hand, if an
execution of P raises an MM exception, then the programmer knows that the

program has a data race.

While the Soundness guarantee ensures that an SC violation will eventually be

caught, an execution’s behavior is undefined between the point at which the SC
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violation occurs and the exception is raised. The drfx model therefore guarantees

an additional property:

e Safety: If an execution of P invokes a system call, then the observable

program state at that point is reachable through an SC execution of P.

Intuitively the above property ensures that any system call in an execution of P
would also be invoked with exactly the same arguments in some SC execution of P.
This property ensures an important measure of safety and security for programs

by prohibiting undefined behavior from being externally visible.

4.1.1 A Compiler and Hardware Design for DRFx

Gharachorloo and Gibbons describe a hardware mechanism to detect SC viola-
tions [GG91]. Their approach dynamically detects conflicts between concurrently
executing instructions. Two memory operations are said to conflict if they ac-
cess the same memory location, at least one operation is a write, and at least
one of the operations is not a synchronization access. While simple and effi-
cient, this approach only handles hardware reorderings and does not consider
the effect of compiler optimizations. As a result, their approach guarantees the
DRF and Soundness properties with respect to the compiled version of a pro-
gram but does not provide any guarantees with respect to the original source

program [GG91, CDL09].

A key contribution of drfx is the design and implementation of a detection
mechanism for SC violations that properly takes into account the effect of both
compiler optimizations and hardware reorderings while remaining lightweight and
efficient. The approach employs a novel form of cooperation between the compiler

and the hardware. The notion of a region, which is a single-entry, multiple-exit
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portion of a program, is introduced. The compiler partitions a program into
regions, and both the compiler and the hardware may only optimize within a
region. Each synchronization access must be placed in its own region, thereby
preventing reorderings across such accesses. It is also required that each system
call be placed in its own region, which allows drfx to guarantee the Safety prop-
erty. Otherwise, a compiler may choose regions in any manner in order to aid
optimization and/or simplify runtime conflict detection. Within a region, both
the compiler and hardware can perform many standard sequentially valid opti-
mizations. For example, unrelated memory operations can be freely reordered

within a region, unlike the case for the traditional SC model.

To ensure the drfx model’s DRF and Soundness properties with respect to
the original program, I will show that it suffices to detect region conflicts be-
tween concurrently executing regions. Two regions R; and R, conflict if there
exists a pair of conflicting operations (01, 02) such that 0; R and 0, [Rk. Such
conflicts can be detected using runtime support similar to conflict detection in
transactional memory (TM) systems [HM93|. As in TM systems, both software
and hardware conflict detection mechanisms can be considered for supporting
drfx. A hardware detection mechanism is pursued in this implementation, since
the required hardware logic is fairly simple and is similar to existing bounded
hardware transactional memory (HTM) implementations such as Sun’s Rock pro-
cessor [DLMO09]. In fact, the hardware design can be significantly simpler than
that of a TM system. Unlike TM hardware, which needs complex support for
versioning and checkpointing to enable rollback upon detecting a conflict, drfx
hardware only needs support for raising an exception on a conflict. Also, a drfx
compiler can bound the number of memory bytes accessed in each region, en-
abling the hardware to perform conflict detection using finite resources. While

small regions limit the scope of compiler and hardware optimizations, an approach
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discussed in §4.4 allows most of the lost optimization potential to be recovered.

4.1.2 Contributions

The research presented in this chapter makes the following contributions:

e The drfx memory model for concurrent programming languages is defined
via three simple and strong guarantees for programmers (§4.2). A set of
conditions on a compiler and hardware design that are sufficient to enforce

the drfx memory model is established.

e A formalization of the drfx memory model as well as of the compiler and
hardware requirements (§4.3) is presented. A proof that these requirements

are sufficient to enforce drfx is outlined.

e A concrete compiler and hardware instantiation of the approach (§4.4) is
presented. An implementation of a drfx-compliant compiler on top of
LLVM [LAO04] is described, including an efficient solution for bounding re-
gion sizes so that a processor can detect conflicts using finite hardware

resources.

e The performance cost of this compiler and hardware instantiation is evalu-
ated in terms of lost optimization opportunity for programs in the Parsec
and SPLASH-2 benchmark suites (§4.5). The results show that the per-
formance overhead is on average 11% when compared to the baseline fully

optimized implementation.
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4.2 Overview of drf:

This section gives an overview of how the drfx memory model works. It first
motivates and gives context by delving into more detail on some of the topics
touched on in Chapter 2, including the interaction of optimizations and data
races, and the impracticality of precise data race detection for the purpose of
simplifying memory models. A description of the drfx approach to targeted

detection of problematic races follows.

4.2.1 Compiler Transformations in the Presence of Races

It is well known that sequentially valid compiler transformations, which are cor-
rect when considered on a single thread in isolation, can change program behavior
in the presence of data races [AH90, GLL90, MPAO5|. Consider the C++ exam-
ple from Figure 1.2(a) described in Chapter 1. Thread t uses a Boolean variable
init to communicate to thread u that the object X is initialized. Note that al-
though the program has a data race, the program will not incur a null dereference

on any SC execution.

Consider a compiler optimization that transforms the program by reordering
instructions A and B in thread t. This transformation is sequentially valid, since
it reorders independent writes to two different memory locations. However, this
reordering introduces a null dereference (and violates SC) in the interleaving
shown in Figure 1.2(b).! The same problem can occur as a result of out-of-order

execution at the hardware level.

To avoid SC violations, languages have adopted memory models based on the

! Although this “optimization” may seem contrived, many compiler optimizations effectively
reorder accesses to shared memory. Detailed examples can be found in the next chapter (§5.2).
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X*x x = null;

atomic bool init = false;

// Thread t // Thread u
A: x = new X(); C: if(init)
B: init = true; D: x->f++;

Figure 4.1: Correct, data-race-free version of program from Figure 1.2

DRFO0 model [AH90]. Such models guarantee SC for programs that are free of
data races. The data race in our example program can be eliminated by ex-
plicitly annotating the variable init as atomic (volatile in Java 5 and later).
This annotation tells the compiler and hardware to treat all accesses to a vari-
able as “synchronization”. As such, (many) compiler and hardware reorderings
are restricted across these accesses, and concurrent conflicting accesses to such
variables do not constitute a data race. As a result, the revised C+-+ program
shown in Figure 4.1 is data-race-free and its accesses cannot be reordered in a

manner that violates SC.

4.2.2 Writing Race-Free Programs is Hard

For racy programs, on the other hand, DRF0 models provide much weaker guar-
antees than SC. For example, the proposed C-+-+ memory model [BAO8| considers
data races as errors akin to out-of-bounds array accesses and provides no seman-
tics to racy programs. This approach requires that programmers write race-free
programs in order to be able to meaningfully reason about their program’s be-
havior. But races are a common flaw, and thus it is unacceptable to require a
program be free of these bugs in order to reason about its behavior. As an exam-

ple, consider the program in Figure 4.2 in which the programmer attempted to
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X* x = null;

bool init = false;

// Thread t // Thread u
A: lock(L); E: lock(M)

B: x = new X(); F: if(init)
C: init = true; G: x->f++;
D: unlock(L); H: unlock(M)

Figure 4.2: An incorrect attempt at fixing the program from Figure 1.2.

fix the data race in Figure 1.2(a) using locks. Unfortunately, the two threads use
different locks, an error that is easy to make, especially in large software systems

with multiple developers.

Unlike out-of-bounds array accesses, there is no comprehensive language or
library support to avoid data race errors in mainstream programming languages.
Further, like other concurrency errors, data races are nondeterministic and can
be difficult to trigger during testing. Even if a race is triggered during testing, it
can manifest itself as an error in any number of ways, making debugging difficult.
Finally, the interaction between data races and compiler/hardware transforma-
tion can be counter-intuitive to programmers, who naturally assume SC behavior

when reasoning about their code.

4.2.3 Detecting Data Races Is Expensive

This problem with prior data-race-free models has led researchers to propose to
detect and terminate executions that exhibit a data race in the program [AHM91,

Boe09, EQT07|. Note that it is not sufficient to only detect executions that
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// Thread t // Thread u // Thread t // Thread u
Az lock(L); Az lock(L);
C: init = true; C: init = true;

E: lock(M) B: x = new X();

F: if(init) D: unlock(L);

G:  x->F++; E: lock(M)

H: unlock(M); F: 1f(init)
B: x = new X(); G:  x->F++;
D: unlock(L); H: unlock(M)

(a) (b)

Figure 4.3: A program with a data race may or may not exhibit SC behavior at runtime.
(a) Interleaving that exposes the effect of a compiler reordering. (b) Interleaving that does not.
exhibit a strictly simultaneous data race (Definition 2.2). While the existence
of such an execution implies the existence of a data race in the program, other
executions, which are racy only according to the more permissive Definition 2.6,
can also suffer from SC violations. Figure 4.3(a) shows such an execution for the
improperly synchronized code in Figure 4.2. When executing under a relaxed
memory model, statements B and C can be reordered. The interleaving shown
in Figure 4.3(a) suggests an execution where the racing accesses to init do
not occur simultaneously, but non-SC behavior (null dereference upon executing
statement G) can occur. The execution does have a happened-before data race

by Definition 2.6.

As discussed at length in the previous chapters, precise happened-before-based
data race detection is slow and thus impractical for memory model purposes. Fur-
thermore, imprecision such as that introduced by LiteRace or prior fast detection

techniques cannot provide the drfx soundness guarantee since races resulting in
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Figure 4.4: The relationships among various properties of a program execution.

violation of SC may be missed.

4.2.4 Detecting SC Violations is Enough

Although implementing drfx requires detecting all races that may cause non-
SC behavior, there are some races that do not violate SC [GG91|. Thus, full
happened-before race detection, while useful for debugging, is overly strong for
simply ensuring executions are SC. For example, even though the interleaving in
Figure 4.3(b) contains a happened-before data race, the execution does not result
in a program error. The hardware guarantees that all the memory accesses issued
while holding a lock are completed before the lock is released. Since the unlock
at D completes before the lock at E, the execution is sequentially consistent even
though the compiler reordered the instructions B and C. Therefore, the memory
model can safely allow this execution to continue. On the other hand, executions
like the one in Figure 4.3(a) do in fact violate SC and should be halted with a

memory model (MM) exception.

The Venn diagram in Figure 4.4 clarifies this argument (ignore the RCF and

RS sets for now). SC represents the set of all executions that are sequentially
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consistent with respect to a program P. DRF is the set of executions that are
data-race free. To satisfy the DRF and Soundness properties described in §4.1,
all executions in DRF must be accepted and all executions that are not in SC
must be terminated. However, the model allows flexibility for executions that
are not in DRF but are in SC: it is acceptable to admit such executions since they
are sequentially consistent, but it is also acceptable to terminate such executions
since they are racy. This flexibility allows for a much more efficient detector than

full-fledged race detection, as described below.

The drfx memory model only guarantees that non-SC executions eventually
terminate with an exception. This allows SC detection to be performed lazily,
thereby further reducing the conflict detector’s complexity and overhead. Never-
theless, the Safety property described in §4.1 guarantees that an MM exception is
thrown before the effects of a non-SC execution can reach any external component

via a system call.

4.2.5 Enforcing the brFx Model

The key idea behind enforcing the drfx model is to partition a program into
regions. Each region is a single-entry, multiple-exit portion of the program. Both
the hardware and the compiler agree on the exact definition of these regions and
perform program transformations only within a region. Each synchronization
operation and each system call is required to be in its own region. For instance,
one possible regionization for the program in Figure 4.2 would make each of {B,C}

and {F,G} a region and put each lock and unlock operation in its own region.

During execution, the drfx runtime signals an MM exception if a conflict is
detected between regions that are concurrently executing in different processors.

We define two regions to conflict if there exists any instruction in one region that
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conflicts with any instruction in the other region. More precisely, we only need
to signal an MM exception if the second of the two conflicting accesses executes
before the first region completes. In the interleaving of Figure 4.3(b), no regions
execute concurrently and thus the drfx runtime will not throw an exception,
even though the execution contains a data race. On the other hand, in the
interleaving shown in Figure 4.3(a), the conflicting regions {B,C} and {F,G} do

execute concurrently, so an MM exception will be thrown.

4.2.6 From Region Conflicts to DRFx

The Venn diagram in Figure 4.4 illustrates the intuition for why the compiler
and hardware co-design overviewed above satisfies the drfx properties. If a
program execution is data-race-free (DRF), then concurrent regions will never
conflict during that execution, i.e., the execution is region-conflict free (RCF).
Since synchronization operations are in their own regions, this property holds
even in the presence of intra-region compiler and hardware optimizations, as long
as the optimizations do not introduce speculative reads or writes. If an execution
is RCF, then it is also region-serializable (RS): it is equivalent to an execution in
which all regions execute in some global sequential order. That property in turn
implies the execution is SC with respect to the original program. This establishes

the DRF property of the drfx model.

On the other hand, suppose that an execution is not SC. Then as the Venn
diagram shows, that execution is also not region-conflict free, so an MM exception
will be signaled. Again this property holds even in the presence of non-speculative
intra-region optimizations. Therefore the Soundness property of the drfx model

is enforced.

In general, each of the sets illustrated in the Venn diagram is distinct: there
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exists some element in each set that is not in any subset. In some sense this
fact implies that the notion of region-conflict detection is just right to satisfy the
two main drfx properties. On the one hand, it is possible for a racy program
execution to nonetheless be region-conflict free. In that case the execution is
guaranteed to be SC, so there is no need to signal an MM exception. This
situation was described above for the example in Figure 4.3(b). On the other
hand, it is possible for an SC execution to have a concurrent region conflict and
therefore trigger an MM exception. Although the execution is SC, it is nonetheless
guaranteed to be racy. For example, consider again the program in Figure 4.2.
Any execution in which instructions B and C are not reordered will be SC, but
with the regionization described earlier some of these executions will trigger an

MM exception.

4.2.7 The Compiler and the Hardware Contract

The compiler and hardware are allowed to perform any transformation within a
region that is consistent with the single-thread semantics of the region, with one
limitation: the set of memory locations read (written) by a region in the original
program should be a superset of those read (written) by the compiled version of
the region. This constraint ensures that an optimization cannot introduce a data

race in an originally race-free program.

Many traditional compiler optimizations (constant propagation, common subex-
pression elimination, dead-code elimination, etc.) satisfy the constraints above
and are thus allowed by the drfx model. Figure 4.5 describes an optimization
that is disallowed by the drfx model. Figure 4.5(a) shows a loop that accumu-
lates the result of some computation in the sum variable. A transformation that

allocates a register for this variable is shown in Figure 4.5(b). The variable sum
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if(n>0) {
reg = sum;
reg = sum;
i-0- ien- i f i=0; i<n; i++ . . )
for(i=0; i<n; I++) or(i=0; T<n: T+ for(i=0; i<n; i++)
= il: += i];
sum += a[i]; reg += ali] reg += a[i];
sum = reg;
sum = reg;
}
(a) (b) ()

Figure 4.5: A transformation that introduces a read and a write.

is read into a register at the beginning of the loop and written back at the end
of the loop. However, on code paths in which the loop is never entered, this
transformation introduces a spurious read and write of sum. While such behavior
is harmless for sequential programs, it can introduce a race with another thread
modifying sum. One way to avoid this behavior is to explicitly check that the
loop is executed at least once, as shown in Figure 4.5(c). The drfx model allows
the transformation with this modification, although the current compiler imple-
mentation simply disables the transformation. In spite of this, the experimental
results in §4.5 indicate that the performance reduction due to lost compiler opti-

mizations is reasonable, on average 8% on the evaluated benchmarks.

In addition to obeying the requirement above, the hardware is also responsi-
ble for detecting conflicts on concurrently executing regions. While performing
conflict detection in software would avoid the need for special-purpose hardware,
conflict detection in software can lead to unacceptable runtime overhead due to
the need for extra computation on each memory access. On the other hand,
performing conflict detection in hardware is efficient and lightweight. Sun’s TM
support in the Rock processor has demonstrated that conflict detection is feasible
in hardware [DLMO09]. drfx hardware can actually be simpler than TM hard-

ware, since speculation support is not needed. Further, unlike in a TM system,
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the drfx compiler can partition a program into regions of bounded size, thereby
further reducing hardware complexity by safely allowing conflict detection to be

performed with fixed-size hardware resources.

Having the compiler bound the size of regions is essential for efficient hardware
detection, but the fences inserted by the compiler for the purposes of bounding
should not unnecessarily disallow hardware optimizations. As such, the drfx
implementation supports two types of fences: hard fences that surround synchro-
nization operations and system calls, and soft fences that are inserted only for the
purposes of bounding region size. Both the implementation and the formalism
account for the fact that the hardware can perform certain optimizations across

soft fences that it must not perform across hard fences.

4.3 Formal Description of drf:

This section describes the formalization of the drfx model. Preliminary notation
and definitions are introduced in §4.3.1. A formal set of requirements sufficient
to establish the drfx guarantees are broken down into the responsibilities of the
compiler, and those of the execution environment, which in the implementation
described in this chapter is hardware, but which could potentially be a soft-
ware interpreter or some combination of hardware and software. §4.3.2 formally
presents the requirements that drfx places on the compiler and establishes two
key lemmas relating a source program to the output of a drfx-compliant com-
piler. In §4.3.3 the responsibilities of the execution environment are formalized
and two important properties of a drfx-compliant execution are established. Fi-
nally, 84.3.4 uses these results to establish the properties of the drfx model. Full
proofs are omitted here, but the interested reader can find them in prior technical

reports [MSMO09, SMNT11|.
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4.3.1 Preliminary Definitions

A program P is a set of threads Ty, To, -+, T where each thread is a sequence

of deterministic instructions including;:

regular loads and stores (regular accesses)

atomic loads and stores (atomic operations)

branches and arithmetic operations on registers
e a special end instruction indicating the end of a thread’s execution

e fence instructions (a hard fence hfence and a soft fence sfence) used

only in compiled programs

Note that we assume the source language and target language are the same
(actually the source language is a subset of the target language), so both source
programs and compiled programs are represented in the same way. An argument

extending the results to a high-level source language will be presented later.

We assume the semantics of our language is given in terms of how an instruc-
tion changes a machine state M that contains shared global memory locations as
well as a separate set of local registers for each thread. This semantics dictates
how a thread’s abstract execution proceeds. We write (M, 1) —=, (M, 1) to
mean that executing instruction | in machine state M results in machine state
M with I poised to execute next in thread T. We write (M, 1) —=* (M, 1) to in-
dicate several steps of execution (transitive closure of above). Fence instructions

behave as no-ops: (M, hfence) — , (M, ) where | is the next instruction in

program order in T, and similarly for sfence.
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We extend the notion of a thread’s abstract execution to a program by having
execution proceed by choosing any thread and executing a single instruction from

that thread. We write:
(M1{|11"' !Ij1"' 1|n}) ——p (M1{Il1"' 1|Aj!"' 1II’I})

if and only if (M, Ij) =, (M, 1). We call one or more of these steps a (partial)

abstract sequential execution:
(M1 1) == 5 (M {0 D).

We define a behavior to be a pair of machine states and denote it by Mg,y [
Meng. Intuitively, we use behaviors to describe a starting machine state and a
machine state that is arrived at after executing some or all of a program. The
standard notion of sequential consistency can be phrased in terms of behaviors

and abstract sequential executions.

Definition 4.1. M, is a sequentially consistent behavior for a program
P, or Mg is SC for P, if there exists an abstract sequential execution
(Mo, {lo, -, Ino}) —— % (M, {end, - - - ,end}) where each ljg is the first instruc-
tion in thread Tj. We say that My [_Mlis a sequentially consistent partial behav-
ior for P if there is a partial abstract sequential execution (Mg, {119, -+, Ino}) == %

(M, {14, -, 1,}) where each ljy is the first instruction in thread Tj.

We say that two memory access instructions U and v conflict if they access the
same memory location, at least one is a write, and at least one is not an atomic
operation. We say that a program has a data race if it has a partial abstract
sequential execution where two conflicting accesses are ready to execute. More

formally:

Definition 4.2. A program P has a data race if for some My, U, V,

(Mo, {lios -+ v Ino) == % (M, {04, U, -, v, 1))
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where U and Vv are conflicting accesses. We shall say that such a partial abstract

sequential execution exhibits a data race.

The above definition for a racy program and execution is simply a restatement
of Definitions 2.2 and 2.3 adapted to this formal setting which has a well-defined

notion of an abstract execution.

4.3.2 DRFx-compliant Compilation

A partition Q of a thread T is a set of disjoint, contiguous subsequences of T
that cover T. Call each of these subsequences a region. Regions will be denoted

by the metavariable R.

Definition 4.3. A partition Q is valid if:

e each atomic operation and end operation is in its own region

 each region has a single entry point (i.e. every branch has a target that is

either in the same region or is the first instruction in another region)

We extend the notion of abstract execution of a thread from instructions to
regions as follows. We write (M, R) =5, (M, R)if (M, 1) == - - ==, (M, I))

where

I, is the first instruction in R,

Iy 8 1, for each 2 <k <n,

|2, ey, In—l , and

I, is the first instruction in region R (it is possible that R = R).
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For threads with valid partitions, (M, R) —=, (M, R) intuitively means that
beginning with memory in state M, executing the instructions in R in isolation
will result in memory having state M and T ready to execute the first instruction
in region R. Extending this to programs, an abstract region-sequential execution
is one where a scheduler arbitrarily chooses a thread and executes a single region
from that thread. We define region-serializable behavior for a program P in terms

of an abstract region-sequential execution.

Definition 4.4. We say My [Ml is region-serializable behavior, or RS, for
P with respect to thread partitions Q; if there is an abstract region-sequential
execution (Mg, {Ri0, ** ,Rno}) =% (M, {Ry, -+ ,Rn}) where each Rjq is the

first region given by partition Qj for thread Tj.

Now let us introduce notation for the read and write sets for a region given
a starting memory state. read(M, R) is the set of locations read when executing
R in isolation starting from memory state M. write(M, R) is defined similarly.

Note that these are sets and not sequences.

We can now describe the requirements the drfx model places on a compiler.
Consider a compilation P [P 1where each thread T; in P is partitioned into

some number, mM;j, of regions by Qj. So we have,
P={Ti  Ta}={Ru*Rim;," " ,Rnr " Rom, }.

Furthermore, the compiled program has the same number of threads and each
is partitioned by some Qj into the same number of regions as in the original
program. So we have,

P'={R), R

imyr’

"’R:ﬂ"'Ramn}'

We consider such a compilation to be drfx-compliant if:

(C1) The partitions Q; and Qj are valid.
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(C2) Foralli,j,M, we have (M, Rjj) ——, (M, Rix) LM, R}j) ——0(M, R})

(C3) For all i, j,M, we have read(M, R;;) [rdad(M, R;j;) and write(M,R;;) [
write(M, Rj;)

(C4) Each region Rj; in the compiled program contains exactly one fence opera-
tion and it is the first instruction. Each of the fences surrounding an atomic
operation must be an hfence. The fence preceding an end operation also

must be an hfence.

Intuitively, the above definition of a drfx-compliant compilation requires
that a drfx-compliant compiler choose valid partitions for a program’s threads,
perform optimizations only within regions, maintain the read and write sets of
each region, and introduce hfence and sfence instructions to demarcate region
boundaries. These fence instructions communicate the thread partitions chosen
by a drfx-compliant compiler to the execution environment. In the next section,

we will refer to these as the fence-induced thread partitions of a program.

We now state the two key lemmas we have proven for drfx-compliant com-

pilations.

Lemma 4.1. If P [P7is a drfx-compliant compilation and My, [CMlis a
region-serializable behavior for P’ with respect to its fence-induced thread parti-

tions, then My, [CIMl1is a (partial) sequentially consistent behavior for P.

Proof Sketch. We can transform an abstract region-sequential execution of P’
to an abstract region-sequential execution of P due to (C2). Clearly an abstract

region-sequential execution qualifies as an abstract sequential execution. 1

Lemma 4.2. If P [P7lis a drfx-compliant compilation and P’ has a data race,

then P has a data race.
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Proof Sketch. Essentially, we take a partial abstract sequential execution of P’
that exhibits a simultaneous data race, truncate it to the earliest happened-before
data race, and reorder the truncated trace while maintaining program dependen-
cies to achieve a trace of P’ with a region-sequential prefix and a suffix containing
a simultaneous race. The ability to perform this reordering and achieve a region-
sequential prefix relies critically on (C1) which insists that atomic accesses are
in their own region. We can then use (C2) and (C3) to construct an abstract

sequential execution of P exhibiting a data race from the racy execution of P’.

L1

Full proofs for the lemmas in this section can be found in [MSMO09].

4.3.3 DRFx-compliant Execution

We now formally specify the requirements that the drfx model places on a ma-
chine executing a program. We will represent a (partial) relaxed execution, E,
of a program as a 5-tuple E = (M, T, €0, rcs, err). Each of the components is

described below:

* My is the initial machine state

e T is aset of individual thread traces (T = {1y, ,Th}). Each thread trace
Tj contain instructions in the order specified by the program for thread i
without gaps. We call this order to (it totally orders instructions within a

thread and is a partial order on all instructions in the program execution).

Each thread trace is divided into dynamic regions (notated using metavari-
able p), with all instructions between two fence instructions in the trace
belonging to one dynamic region. This is referred to as the fence-induced

partition. We call the fence-induced partition valid if all atomic operations
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are immediately surrounded by hfence instructions. Although strictly
speaking toO is a relation on instructions, we will also use it to order dy-

namic regions within a thread trace.

e e0 is a relation that specifies a partial order on memory accesses. If two
operations U and V access the same memory location and at least one of
them is a write, then either U <go V or V <go U. Furthermore, no two
operations that do not access the same memory location are related by eo.
eo uniquely defines the write whose value each read sees (i.e., the most
recent write to the same location in €0). Note that eo [Eb may contain
cycles, so the relaxed orderings allowed by optimizations such as out-of-
order execution and store buffers are captured by €0 rather than by the

thread traces.

® rcs is a map from dynamic regions to a conflict detection state in the set
{uncommitted, lagging, committed}. Intuitively, rcs models a conflict
detection mechanism which works on the fence demarcated regions and
moves them through the three states as they execute, from uncommitted,
possibly to lagging, and finally to committed when detection successfully
completes with no region conflict found. The lagging regions will allow the
model to capture a conflict detection mechanism that distinguishes between

hfences and sfences and commits certain regions out of order.

e err is either [dr a single element of €0, U <gq V. Intuitively, a non-empty
err will indicate a conflicting pair of accesses in concurrently executing

regions which triggers an MM exception.

We say that an execution E = (My, T, €0, rcs, err) is well-formed for a program

P if all of the following conditions are met:
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(WF1) Each thread trace T; represents a valid sequential execution of thread
i in P given that each read sees the value written by the (unique)

closest preceding write in €0.

(WF2) Let d be the partial order that captures intra-thread data and control
dependencies. €0 is consistent with d and eoy,, [dlis acyclic, where
€0y, is the subset of €0 containing only write-to-read (i.e. read-after-
write, or true) dependencies (U <eo,, V [T W ¥Ke v [Ula write [

Vv a read).

(WF3) A committed or lagging region never follows an uncommitted re-
gion in a thread trace. That is, if there is some p such that rcs(p) =

uncommitted, then for all p’ such that p <¢o p/, rcs(p’) = uncommitted.

(WF4) A lagging region always has some committed region following it in
its thread trace. That is, for all p such that rcs(p) = lagging, there

exists some p’ such that p <¢o p’ and rcs(p’) = committed.

(WF5) All regions preceding an hfence in a thread trace are committed.
No thread trace contains an atomic access without an hfence imme-

diately following it.

Intuitively, conditions (WF1) and (WF2) simply ensure that our machine cor-
rectly executes instructions and obeys intra-thread data and control dependen-
cies. In particular, condition (WF2) prevents a machine from speculatively writ-
ing a value and making it visible to other threads before a read on which the

write depends completes.

Conditions (WF3) and (WF4) establish some basic conditions that we assume
for a conflict detection mechanism. Multiple uncommitted regions may be in-

flight in a thread simultaneously. Regions may commit out of order, but when
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this happens, prior uncommitted regions in the same thread must be classified
as lagging regions. Condition (WF5) establishes that hfence instructions force
all prior regions to commit. Furthermore, atomic operations may not complete
(i.e., become visible to other threads) until their region is committed and the

succeeding hfence is executed.

We also define an operator on a well-formed, partial relaxed execution that
truncates incomplete thread traces to include only committed and lagging re-
gions. Note that the well-formedness conditions above ensure that all uncommitted
regions in a thread trace occur consecutively at the end. The truncation operator
drops instructions from these uncommitted regions from the end of each trace,
removes pairs from eo if at least one operation in the pair has been truncated
from its thread trace, removes truncated regions from rcs , and sets err to []
We notate this as follows:

[(M,, T ,eo, rcs,err) 3 (M, MLIeb[Irks[ 1)1

We call a well-formed execution E = (M, T, €0, rcs, err) drfx-compliant if
it satisfies all of the following conditions, which capture a sufficient condition for

conflict detection to satisfy the drfx memory model:

(E1) Given accesses u [pl, and v [Cp} to the same location from different
threads, at least one of which is a write, if U <¢c V and rcs(p,) B
uncommitted and rcs(p,) € uncommitted, then there do not exist
v/ [p] and u’ [Cp) such that pyo<to Pu and py <o pyoand V' <eo U
[The set of committed and lagging regions have an order consistent

with eo.]

(E2) There do not exist a read r [} and a write w [Cp}, such that rcs(py) B

uncommitted and rcs(py) = uncommitted and W <g, r. [Reads in
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committed and lagging regions do not see writes in uncommitted

regions.|

(E3) There do not exist a read r [p) and a write w [Cp), such that rcs(py) =
uncommitted and rcs(py) = committed and r <¢o W. | Writes from

committed regions are visible to reads in uncommitted regions. |

(E4) If err = U <go V, then u [CP], and v [Cp} conflict, u and v are from
different threads, neither p, or py is committed, and at least one of

these regions is uncommitted.

Intuitively, the conditions ensure a conflict detection mechanism in which
committed regions are guaranteed not to contain accesses that participate in a
race that violates region-serializability, while lagging regions are guaranteed to
not participate in a race that violates region-serializability with accesses in other
lagging regions or committed regions, but may participate in a violating race
with an access in an uncommitted region. Condition (E1) ensures that any race
that would cause committed and lagging regions not to be serializable is caught.
Condition (E2) requires that all reads in a region must complete before it or any
subsequent region commits. Condition (E3) requires that all writes in a region

must complete and be visible to other threads before it commits.

A drfx-compliant execution that has err = [k called exception-free. A

drfx-compliant execution where err 8 [3§ called exceptional.

The following lemmas establish two key results for drfx-compliant executions.

Lemma 4.3. Given a well-formed, drfx-compliant execution E of a program P
with valid fence-induced thread partitions, [E[éxhibits region-serializable behav-

ior w.r.t. to the fence-induced partitions.
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Proof Sketch.  This follows quickly from (E1) and (E2). Condition (E2) estab-
lishes that any value read by an instruction in [H[ Was written by an instruction
that is also in [H[J Furthermore, Condition (E1) establishes an order on the
regions in [H[ that is consistent with the way that e0 orders conflicting ac-
cesses within those regions. This ensures that the lifting of the e0 relation to
dynamic regions is acyclic, which implies that the execution is serializable w.r.t.

the regions. 1

Lemma 4.4. If there is a well-formed, exceptional, drfx-compliant execution of

a program P with valid fence-induced thread partitions, then P has a data race.

Proof Sketch. From Lemma 4.3 we know that the execution has a region-
serializable prefix. We then use this to construct an abstract sequential execution
of the prefix. Because the execution is exceptional, condition (E4) guarantees
that we have conflicting accesses neither of which is contained in a committed
region, and at least one of which is from an uncommitted region. We can
extend the execution of the prefix to an execution demonstrating a happened-
before data race. Essentially, for a program with valid fence-induced thread
partitions, a happened-before relation between operations on different threads
implies the existence of an hfence following one operation on its thread and
preceding the other on its thread. Since neither of the conflicting accesses is from
a committed region, and condition (WF5) requires regions preceding an hfence

to be committed, we know the accesses cannot be related by happened-before.
2 1

2In fact, there are exceptional, drfx-compliant executions where the conflict detected is not
reachable through an abstract sequential execution, but this can only happen as the result of
a previous data race which is reachable.
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Full proofs for the previous two lemmas can be found in [SMN11]. Rather
than starting with the conditions for well-formed, drfx-compliant execution, the
proofs in the cited techical report are done in the context of the particular ar-
chitectural design described in §4.4.2. Conditions (E1) through (E4) capture the
supporting lemmas from the technical report that are used to establish the results

above. 3

4.3.4 DRFx Guarantees

Putting together the lemmas from Sections 4.3.2 and 4.3.3, we can prove the
following theorem, which ensures that a drfx-compliant compiler along with a
drfx-compliant execution environment enforce the DRF and Soundness proper-
ties. We call an execution complete if either it is exceptional (contains a non-null
err component), or all the thread traces in the execution terminate in an end

operation.

Theorem 4.1. If P [P7is a drfx-compliant compilation, and E is a complete

drfx-compliant execution of P’ with behavior M, [CM] then either:

e E is exception-free and My [CMlis sequentially consistent behavior for P

or

e E is exceptional and P contains a data race.

The arguments presented above were developed entirely in the context of a
low-level machine language. The results can however be extended to a high-level
source language in the following way. Imagine a “canonical compiler” that trans-

lates each high-level statement into a series of low-level operations that read the

3Note that an earlier technical report [MSMO09] establishes similar results under a different
set of conditions that were too restrictive for the eventual hardware design.
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operands from memory into registers, perform appropriate arithmetic operations
on the registers, and then store results back to memory. Any optimizations are
then applied after this canonical compiler is run. We can extend the results to
the high-level language simply by requiring that the compiler choose a region
partition that does not split up instructions that came from the same high-level

source language expression or statement.

The definition of a drfx-compliant execution and Lemma 4.3 establish that
all drfx-compliant executions are region-serializable up to the latest committed
region in each thread. Combining this fact with Lemma 4.1, we can see that,
restricted to committed and lagging regions, a drfx-compliant execution is SC
with respect to the original source program. Note that an hfence operation
cannot execute until all previous regions in its thread are committed (condi-
tion (WF5)). Therefore, requiring that system calls are preceded by hfence
instructions and only use thread-local data ensures that the behavior they ex-
hibit would have been achievable in an SC execution of the original program.?

This establishes the Safety property of the drfx model.

4.4 Compiler and Hardware Design

There are several possible compiler and hardware designs that meet the require-
ments necessary to ensure the drfx properties as described in the previous sec-
tion. In this section one concrete approach is described. It is evaluated in the next
section. The approach is based on two key ideas crucial for a simple hardware

design:

4Condition (E2) is also essential in establishing the Safety property since it ensures that no
read preceding a system call sees a write from an wuncommitted region which might not be
part of an SC execution.
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e Bounded regions: First, the compiler bounds the size of each region in
terms of number of memory accesses it can perform dynamically using a
conservative static analysis. Bounding ensures that the hardware can per-
form conflict detection with fixed-size data structures. Detecting conflicts
with unbounded regions in hardware would require complex mechanisms,
such as falling back to software on resource overflow, that are likely to be

inefficient.

e Soft fences: When splitting regions to guarantee boundedness, the com-
piler inserts a soft fence. Soft fences are distinguished from the fences used
to demarcate synchronization operations and system calls which are called
hard fences. While hard fences are necessary to respect the semantics of
synchronization accesses and guarantee the properties of drfx, soft fences
merely convey to the hardware the region boundaries across which the com-
piler did not optimize. These smaller, soft-fence-delimited regions ensure
that the hardware can soundly perform conflict detection with fixed-size
resources. But, it is in fact safe for the hardware to reorder instructions
across soft fences whenever hardware resources are available, essentially
erasing any hardware performance penalty due to the use of bounded-size

regions.

4.4.1 Compiler Design

A drfx-compliant compiler was built by modifying the LLVM compiler [LA04].
As specified by the requirements (C1) through (C4) in the previous section, to
ensure the drfx properties the compiler must simply partition the program into
valid regions, optimize only within regions, avoid inserting speculative memory

accesses, and insert fences at region boundaries.
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4.4.1.1 Inserting Hard Fences for DRF and Safety

A hard fence is similar to a traditional fence instruction. The hardware ensures
that prior instructions have committed before allowing subsequent instructions to
execute and the compiler is disallowed from optimizing across them. To guarantee
SC for race-free programs, the compiler must insert a hard fence before and after
each synchronization access. On some architectures, the synchronization access
itself can be translated to an instruction that has hard-fence semantics (e.g., the
atomic xchg instruction in AMDG64 and Intel64 [BAOS|), obviating the need for
additional fence instructions. In the current implementation, the compiler treats
all calls to the pthread library and lock-prefixed memory operations as “atomic”
accesses. In addition, since the LLVM compiler does not support the atomic
keyword proposed in the new C++ standard, all volatile variables are treated

as atomic. All other memory operations are treated as data accesses.

To guarantee drfx’s Safety property, a drfx-compliant compiler should also
insert hard fences for each system call invocation, one before entering the kernel
mode and another after exiting the kernel mode. Any state that could be read
by the system call should first be copied into a thread-local data structure before
the first hard fence is executed. This approach ensures that the external system
can observe only portions of the execution state that are reachable in some SC
execution. Transforming system calls in this way is not implemented in the

compiler used for the experiments in §4.5.

To insert a hard fence, the compiler uses the Ilvm_memory.barrier intrinsic
in LLVM with all ordering restrictions enabled. This ensures that the LLVM
compiler passes do not reorder memory operations across the fence. LLVM’s
code generator translates this instruction to an mfence instruction in x86 which

restricts hardware optimizations across the fence.
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4.4.1.2 Inserting Soft Fences to Bound Regions

In addition to hard fences, the compiler inserts soft fences to bound the number of
memory operations in any region. Soft fences are inserted using a newly created
intrinsic instruction in LLVM that is compiled to a special x86 no-op instruction
which can be recognized by the drfx hardware simulator as a soft fence. The
compiler employs a simple and conservative static analysis to bound the number
of memory operations in a region. While overly small regions do limit the scope
of compiler optimizations, experiments show that the performance loss due to
this limitation is about 1.7% on average [MSM10]. After inserting all the hard
fences described earlier, the compiler performs function inlining. Soft fences are
the inserted in the inlined code. A soft fence is conservatively inserted before each
function call and return, and before each loop back-edge. Finally, the compiler
inserts additional soft fences in a function body as necessary to bound region
sizes. The compiler performs a conservative static analysis to ensure that no
region contains more than R memory operations, thereby bounding the number
of bytes that can be accessed by any region. The constant R is determined based

on the size of hardware buffers provisioned for conflict detection.

The above algorithm prevents compiler optimizations across loop iterations,
since a soft fence is inserted at each back-edge. However, it would be possible to
apply a transformation similar to loop tiling [Wol89| which would have the effect
of placing a soft fence only once every R/L iterations, where L is the maximum
number of memory operations in a single loop iteration. Restructuring loops in
this way would allow the compiler to safely perform compiler optimizations across

each block of R/L iterations.
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4.4.1.3 Compiler Optimization

After region boundaries have been determined, the compiler may perform its op-
timizations. By requirements (C2) and (C3), any sequentially valid optimization
is allowed within a region, as long as it does not introduce any speculative reads or
writes since they can cause false conflicts. As such, in the current implementation,
all speculative optimizations in LLVM are explicitly disabled.® Note, however,
that there are several useful speculative optimizations that have simple variants
that would be allowed by the drfx model. For example, instead of inserting a
speculative read, the compiler could insert a special prefetch instruction which
the hardware would not track for purposes of conflict detection. The Itanium ISA
has support for such speculation [TBB01] in order to hide the memory latency of
reads. Also, as shown earlier in Figure 4.5, loop-invariant code motion is allowed
by the drfx model, as long as the hoisted reads and writes are guarded to ensure

that the loop body will be executed at least once.

4.4.2 Hardware Design and Implementation

This section discusses the proposed drfx processor architecture. A lazy conflict
detection scheme using bloom filter signatures is described, as well as several
optimizations that allow efficient execution in spite of the small, bounded regions

created by the drfx compiler.
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Figure 4.6: Architecture support for drfx (shown in gray).

4421 Overview

To satisfy drfx properties, the runtime has to detect a conflict when region-
serializability may be violated due to a data race and raise a memory model
exception (§4.2.6). Figure 4.6 presents an overview of a drfx hardware design
which supports this conflict detection. Additions to the baseline DRF0 hardware
are shaded in gray. The state of several hardware structures at some instant of

time during an execution of a sample program is also shown.

Rollback is a necessary requirement of hardware transactional memory sys-
tems. As such, they can easily tolerate false positives in their conflict detection

mechanism by simply rolling back and re-executing. This allows them to use

The LLVM implementation has functions called isSafeToSpeculativelyExecute,
isSafeToLoadUnconditionally and isSafeToMove, which we modified to return false for
both loads and stores.
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cache-line granularity conflict detection which may report false races. drfx, on
the other hand, does not require a rollback mechanism. But, because it termi-
nates an execution upon detecting a race, false race reports cannot be tolerated.
As such, drfx performs byte-level conflict detection. Performing precise, eager
byte-level conflict detection complicates the coherence protocol and cache archi-
tecture [LCS10]. For instance, such a scheme would require the hardware to
maintain byte-level access state for every cache block, maintain the access state
even after a cache block migrates from one processor to another, and clear the

access state in remote processors when a region commits.

Instead, the drfx hardware employs lazy conflict detection [HCWO04|. Each
processor core has a region bu [er which stores the physical addresses of memory
accesses executed in a region. An entry is created in the region buffer when a
region executes a memory access. A load completes its execution when it com-
mits from the reorder buffer, while a store completes its execution when it retires
from the store buffer. When all the memory accesses in a region have completed
their execution, the processor broadcasts the address set for the region to other
processors for conflict checks. Once the requesting processor has received ac-
knowledgments from all other processors indicating lack of conflicts, it commits
the region and reclaims the region buffer entries. The communication and con-
flict check overhead is reduced by using bloom filter signatures to represent sets
of addresses [CTTO06]. A signature buler is used to store the read and write

signatures for all the in-flight regions in a processor core.

The region buffer has to be at least as large as the maximum number of
instructions allowed to be executed in a soft-fenced region created by the drfx
compiler. The static analysis used by the drfx compiler to guarantee this bound

is necessarily conservative and may create regions that are much smaller than the
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desired bound. Frequent soft-fences leads to frequent conflict checks. This cost
is reduced by coalescing adjacent regions separated by a soft fence into a single
region at runtime when there is sufficient space available in the region buffer.
Supporting this optimization requires using a region buffer somewhat larger than

the maximum possible region-size guaranteed by the compiler.

When executing a hard fence, the drfx hardware stalls the execution of all
future memory accesses until all accesses preceding the fence have completed.
This helps guarantee correct behavior of synchronization operations and ensures
that any conflicts that are detected indeed correspond to a data race. But it also
prevents full utilization of processor resources since instruction and memory level
parallelism cannot be exploited across the fence. If the more frequently occurring
soft fences behaved the same as hard fences, these lost opportunities to exploit
parallelism would result in significant performance overhead. Fortunately, this
is unnecessary since soft fences do not indicate the presence of synchronization.
In fact, memory accesses from a region can be allowed to execute even if earlier
regions that end in soft fences have not committed. In addition, regions sepa-
rated by a soft fence can be committed out of order. The formal proofs outlined
in Section 4.3 admit these optimizations and establish that the drfx runtime

requirements are still satisfied.

4.4.2.2 Signature-based Lazy Conflict Detection

Let us assume that a processor treats soft fences similar to hard fences, an as-
sumption that we will relax later in the discussion. drfx hardware employs lazy
conflict detection to detect when region-serializability could have been violated

due to a data-race.

Each processor core has a region buled A region buffer entry stores the
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physical address of a memory access in a region. The drfx compiler bounds the
size of a soft-fenced region to defined bound B, which determines the minimum

size that a processor needs to provision for a region buffer.

Similar to DRF0 hardware, the memory accesses within a region can execute
out-of-order, and in the case of stores, retire from a store buffer out-of-order. An
entry in the region buffer is created for a memory access when it is in the decode
stage of the pipeline. Its effective address is eventually written to the region

buffer once it is resolved, but before issuing the memory access.

Once all the memory accesses of a region have committed from the re-order
buffer (ROB), and stores are retired from the store buffer, the corresponding
processor broadcasts the address set to the other processors to perform conflict
checks. On receiving a conflict check request, a processor detects a conflict if
the addresses in its region buffer intersect with the address set received. If the
intersection is empty, an acknowledgment is sent to the requester. On receiving
acknowledgments from all the other processors, a processor commits a region by

deleting its address entries from the region buffer.

Broadcasting addresses accessed by every region and checking their member-
ship in every processor’s region buffer is clearly expensive. To reduce this cost,
bloom filter signatures [CTT06] can be used. Memory addresses accessed by a
region are represented using a read and a write signature. Signatures for the
in-flight regions are stored in the signature bu [efl (more than one region could be
in-flight due to the out-of-order execution optimizations discussed later in Sec-
tion 4.4.2.5). To perform conflict checks for a region, a processor first broadcasts
only its signatures. Each processor performs AND operations over the incoming
signatures with the contents in its signature buffer. On detecting a potential con-

flict, a NACK is sent to the requester. On receiving a NACK, a processor sends the
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full address set for the region so that precise conflict detection can be performed.

The size of signatures needs to be large enough so that false conflicts are
rare, avoiding frequent transmission of full address sets. On the other hand,
large signatures could incur significant communication overhead. Experimental
results show that the dynamic region size is relatively small (36 instructions, on
average). But, since many regions can be in flight in a processor at once, the
signature may be compared with many remote regions, increasing the probabil-
ity of getting a false conflict. To address this problem, large signatures (1024
bits) are used, but they are compressed before transmission to reduce communi-
cation overhead. Because many regions have small access sets, their signatures
are effectively compressed using a simple, efficient run-length encoding scheme.
This strategy resulted in very high compression ratios which significantly reduced

communication overhead.

Note that the conflict detection architecture does not require additional state
to be maintained in the cache, nor does it require changes to the coherence pro-

tocol as the drfx conflict check messages are independent of coherence messages.

4.4.2.3 Concurrent Region Conflict Check and Region Execution

When a processor P receives a conflict check request for R’, it need not stall the
execution of its current region R while it performs the conflict check. A conflict
check can be performed in parallel with the execution of a local region. The
intuition here is that any memory address that gets resolved for R during the
conflict check can be shown to have executed after the memory accesses in R'.

Thus, we can order R’ before R in the region serialization of the execution.

However, care must be taken to not raise a false conflict over a speculative

memory access. The region buffer entry and signature buffer is updated once
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the address for a memory access is resolved. It is possible that a branch before
the memory access is mispredicted, and therefore there is a risk that the mem-
ory access could get aborted in future. To avoid raising false exceptions, once a
processor detects a conflict, it delays the exception until the conflicting memory
access is committed from the ROB. If the memory access gets aborted due to mis-
prediction, then an acknowledgment is sent if there were no other conflicts for the
check. Conflicts involving a memory access following a mispredicted branch were
very infrequent in the experiments, therefore the cost of delaying the response to

a conflict check due to such conflicts is negligible.

The signature for a region is updated when one of its memory access’ address
is resolved. When a memory access is aborted due to a branch misprediction,
signatures for its region are not updated. This could result in additional false

positives, but the performance impact is unlikely to be important.

4.4.2.4 Coalescing Soft-Fence-Bounded Regions

The drfx compiler uses a conservative static analysis to estimate the maximum
number of instructions executed in a region. This could result in frequent soft
fences. But a processor can dynamically ignore a soft fence if the preceding soft-
fenced region executed fewer memory accesses than a pre-determined threshold T.
Combining two contiguous soft-fenced regions at runtime does not violate drfx
guarantees, because any conflict detected over the newly constructed larger re-
gion is possible only if there is a race, and ensuring serializability of the larger,
coalesced soft-fenced regions is sufficient to guarantee SC for the original unop-

timized program.

However, the processor needs to ensure that the newly constructed region

does not exceed the size of its region buffer. The design guarantees this by using
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a region buffer that is of size T + B, where B is the compiler specified bound
for a soft-fenced region, and T is the threshold used by a processor to determine
when to ignore a soft fence. Too high a value for the threshold T would result in
large regions at runtime, which might negatively impact performance, because the
probability of aliases in signatures increase. Also, it could undermine out-of-order

commit optimization.

4.4.2.5 Out-of-Order Execution and Commit of Regions

Two important restrictions that need to be obeyed for hard fences can be relaxed

for soft fences, which allows drfx hardware to attain performance close to DRFO.

First, out-of-order execution of soft-fenced regions is allowed. In the case of
a hard fence, before a processor can execute memory accesses from a region, it
has to wait for all the memory accesses in the preceding regions to complete.
This is clearly a requirement for hard fences, since we may detect false conflicts if
memory accesses are allowed to be reordered across hard fences that demarcate
synchronization operations. However, this memory ordering can be relaxed for
soft fences, allowing multiple regions that are not committed to be in-flight simul-
taneously. For example, in Figure 4.7, 17 can be allowed to execute even if regions
Ro and R; have pending memory accesses in the ROB or the store buffer. If there
is a pending store in a previous region (e.g., I1), its value can be forwarded to a

load in a later region (e.g., 17).

The correctness of the above optimization can be intuitively understood by
observing that executing memory accesses out-of-order only results in more in-
flight accesses that needs to be conflict checked. Therefore, it does not mask any
conflicts that would have been detected before. Also, reordering accesses across

soft fences will not cause any access to be reordered across a synchronization
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operation. As such, any conflict that is detected as a result of this reordering still

implies the presence of a data race.

Second, once a region’s memory accesses are completed, a processor can ini-
tiate conflict checks and commit the region from the region buffer if the check
succeeds. Since the ROB commits instructions in-order, it is guaranteed that
when a region is ready to commit, all the memory accesses from preceding re-
gions would have also committed from the ROB. There could, however, be stores
in the store buffer pending for the earlier regions. As a result, those earlier re-
gions would not yet be ready to commit. In this scenario, it is correct to conflict
check and commit a later region as long as all its accesses have committed from
the ROB and retired from the store buffer. The not yet committed, prior regions
correspond to the lagging regions in the formalism described in §4.3.3. In order
to satisfy conditions (E1) and (E2) for lagging regions, addresses for the uncom-
mitted, previous regions must be included in the conflict check message for the

later region.
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Figure 4.7: An Example Binary Compiled Using drfx Compiler.

For example, in Figure 4.7, say region Rg is waiting for its store 1; to be retired
from the store buffer. In the meantime, 15 has completed and has retired from
the store buffer. Now R; is ready to commit. The processor can perform conflict
checking for R; (including the addresses for any uncommitted, prior regions),

and if no conflict is detected, commit by deleting its entries from the region and
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signature buffers (but leaving the entries for uncommitted, prior regions). This
optimization can be intuitively understood by observing that even if a write from
Ro lingering in the store buffer eventually causes a conflict with another access
that has not yet had its address resolved, the successful conflict check of the
addresses in R; and Ry at the time R; commits establishes a global order of all
committed and lagging regions in the system at that point. This guarantees SC

behavior up to the latest committed region in each thread.

4.5 Performance Evaluation

This section presents some performance results comparing the performance of
programs compiled and executed under the drfx memory model to those com-

piled and executed under a DRF0 model.

The baseline compiler is the LLVM [LA04| compiler with all optimizations
enabled (similar to compiling with the -03 flag in gcc) and with fences inserted
before and after each call to a synchronization function and each access to a
volatile variable.® The drfx compiler is the implementation described in the
previous section: hard fences are inserted before each call to a synchronization
function and each access to a volatile variable, optimizations that perform spec-
ulative reads or writes are disabled, and soft fences are inserted to conservatively

bound region size to 512 memory accesses.

Both the baseline and drfx architectures are simulated using a cycle-accurate,

6The unmodified LLVM compiler using its x86 backend targets hardware obeying the TSO
memory model. The baseline simulated architecture uses a weaker memory model which permits
additional reorderings not allowed by TSO. As such, we insert the additional fences around
synchronization accesses to ensure that the program behaves correctly on the weaker model.
The benchmarks run slightly faster in this baseline, DRF0 configuration than on a simulated
TSO architecture running code compiled with unmodified LLVM.
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Figure 4.8: Slowdown of benchmark programs run under the drfx model compared to a baseline
DRFO0 model, broken down in terms of cost of lost compiler optimization and cost of hardware
race detection.

execution driven, Simics based x86_ 64 simulator called FeS2 [FeS|. The baseline
architecture is a 4-core chip multiprocessor operating at 2GHz. It allows both
loads and stores to execute out of order between fences. The drfx architecture
adds support for soft fences and conflict detection as described in the previous
section, using a region buffer of size 512 (compiler bound) + 32 (to support region

coalescing).

Performance is measured over a subset of the PARSEC [BKS08| and SPLASH-
2 [WOT95| benchmarks. All of these benchmarks are run to completion. For
PARSEC benchmarks (blackscholes, bodytrack, canneal, facesim, streamcluster,
swaptions), the sim-medium input set was used (except for streamcluster, which
used the sim-small input). For SPLASH-2 applications (barnes, water-n?) the

default inputs were used.

The slowdown of the drfx configuration (compiler and hardware) over the
baseline configuration is shown in Figure 4.8. The bar is broken up to display the

cost that can be attributed to compiler optimizations that were not able to be
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Figure 4.9: Effectiveness of Region Coalescing, and Out-Of-Order Region Execution and Com-
mit Optimizations.

performed and the cost of hardware detection to support drfx. The approximate
cost of lost compiler optimizations was calculated by compiling a benchmark pro-
gram using the drfx compiler, converting soft fences to no-ops, and running the
resulting binary on the baseline DRF0O hardware simulator. On average, appli-
cations suffer only an 11% slowdown, 8% of which comes from lost optimization
opportunities in the compiler. As mentioned in the previous section, this drfx
compiler implementation is quite conservative and much of this performance could

likely be recovered if loop optimizations were updated to be drfx-compliant.

Figure 4.9 demonstrates the importance of distinguishing soft fences and im-
plementing the optimizations described in the previous section. When soft fences
are treated like hard fences, the benchmarks slow by more than 2% on average.
Enabling out-of-order execution and region commit for soft-fence-bounded region

and region coalescing reduces this drastically to an 11% overhead.

4.6 Conclusion

The drfx memory model for concurrent programming languages gives program-
mers simple, strong guarantees for all programs. Like prior data-race-free mem-

ory models, drfx guarantees that all executions of a race-free program will be
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sequentially consistent. However, while data-race-free models typically give weak
or no guarantees for racy programs, drfx guarantees that the execution of a racy
program will also be sequentially consistent as long as a memory model exception
is not thrown. In this way, drfx guarantees safety and enables programmers to
easily reason about all programs using the intuitive SC semantics. Furthermore,
the minor restrictions drfx places on compiler optimizations are straightforward,

allowing compiler writers to easily establish the correctness of their optimizations.

drfx capitalizes on the fact that sequentially-valid compiler optimizations
preserve SC as long as they do not interact with concurrent accesses on other
threads. Since performing precise data race detection is impractically slow in
software and complex in hardware, drfx allows the compiler to specify code re-
gions in which optimizations were performed. The hardware can then efficiently
target data race detection only at regions of code that execute concurrently. This
allows drfx-compliant compiler and hardware to cooperate, terminating execu-
tions of racy programs that may violate SC. The formal development establishes
a set of requirements for the compiler and the hardware that are sufficient to
obey the drfx model. The implementation and evaluation indicate that a high-

performance implementation of drfx is possible.
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CHAPTER 5

An SC-preserving Compiler

Like the previous chapter which described drfx, this chapter describes an ap-
proach to simplifying the memory model exposed to the programmer. The ap-
proach is in some ways similar to drfx and in some ways starkly different. While
drfx encompasses both the hardware and programming language level memory
models, the approach described in this chapter divorces the two. The focus is
on avoiding SC-violating optimizations in the compiler while relying on exist-
ing hardware techniques that separately provide a strong memory model. This
essentially allows us to pass the hardware-level memory model through to the
programming language level unchanged. As in drfx, programmers are given
guarantees for both racy programs and data-race-free programs. Also like drfx,
a form of hardware race detection and cooperation between the compiler and
hardware is used. But in this approach, it is primarily used as a performance
optimization as opposed to being central to correctness. The key in this approach
is restricting the compiler to reorder memory accesses only when it can guaran-
tee that those accesses are to thread-local variables, which is accomplished using
a simple, conservative, modular analysis. This can be thought of as statically
finding slices of code which cannot contain racing accesses and thus can be safely

optimized.

84



5.1 Introduction

Part of the motivation of drfx, and indeed of the DRF0 memory models before it,
is the commonly accepted assumption that programming languages must relax the
SC semantics of programs in order to allow effective compiler optimizations. The
research presented in this chapter challenges that assumption by demonstrating
an optimizing compiler that retains most of the performance of the generated
code while preserving the SC semantics. A compiler is said to be SC-preserving
if every SC behavior of a generated binary is guaranteed to be an SC behavior of

the source program.

Starting from LLVM [LA04], a state-of-the-art C/C++ compiler, the SC-
preserving compiler was built by modifying each of the optimization passes to
conservatively disallow transformations that might violate SC. Experimental re-
sults (Section 5.3) indicate that the resulting SC-preserving compiler incurs only
3.8% performance overhead on average over the original LLVM compiler with all
optimizations enabled on a set of 30 programs from the SPLASH-2 [WOT95],
PARSEC [BKS08], and SPEC CINT2006 (integer component of SPEC CPU2006
[Hen06]) benchmark suites. Moreover, the maximum overhead incurred by any

of these benchmarks is just over 34%.

5.1.1 An Optimizing SC-Preserving Compiler

The observation that enables this approach is that a large class of optimiza-
tions crucial for performance are either already SC-preserving or can be mod-
ified to preserve SC while retaining much of their effectiveness. Several com-
mon optimizations, including procedure inlining, loop unrolling, and control-flow

simplification, do not change the order of memory operations and are therefore
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Figure 5.1: A compiler transformation from program (a) into (b) that eliminates the common
subexpression X*2. In the presence of a concurrently running thread (c¢) and an initial state
where all variables are zero, (b) can observe a state u == 1 && v == 0, which is not visible
in (a). Lowercase variables denote local temporaries, while uppercase variables are potentially
shared.

naturally SC-preserving. Other common optimizations, such as common subex-
pression elimination (CSE) and loop-invariant code motion, can have the effect
of reordering memory operations. However, these optimizations can still be per-
formed on accesses to thread-local variables and compiler-generated temporary
variables. The analysis required to distinguish such variables is simple, modular,
and is already implemented by modern compilers such as LLVM. Furthermore,

transformations involving a single shared variable are also SC-preserving under

special cases (Section 5.2).

Consider the instance of CSE in Figure 5.1, where the compiler eliminates the
subexpression X*2. By reusing the value of X read at L1 in L3, this transforma-
tion effectively reorders the second access to X with the access to Y at L2. While
invisible to sequential programs, this reordering can introduce non-SC behaviors
in a concurrent program, as shown in Figure 5.1. However, an SC-preserving
compiler can still perform this transformation as long as at least one of X and Y
is known to be thread-local. If X is thread-local, then its value does not change
between L1 and L3 and so the transformation is SC-preserving. On the other
hand, if Y is thread-local then any SC execution of the transformed program can
be shown to be equivalent to an SC execution of the original program in which

instructions L1 to L3 execute without being interleaved with instructions from
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other threads. By carefully enabling transformations only when they are SC-
preserving, a compiler is able to achieve performance comparable to a traditional

optimizing compiler while retaining the strong SC semantics.

5.1.2 Providing End-to-End Programmer Guarantees

Providing end-to-end SC semantics to the programmer requires executing the
output of an SC-preserving compiler on SC hardware. The empirical results in
this chapter complement recent architecture research [GGH91, RPA97, Hil98,
GF02, CTM07, BMWO09| that demonstrates the feasibility of efficient SC hard-
ware. The basic idea behind these proposals is to speculatively reorder memory
operations and recover in the rare case that these reorderings can become visible
to other processors. While such speculation support necessarily increases hard-
ware complexity, hopefully this work on an SC-preserving compiler increases the
incentives for building SC hardware, since in combination they enable end-to-end

SC semantics for programmers at a reasonable cost.

Even in the absence of SC hardware, the techniques described in this chapter
can be used to provide strong semantics to the programmer. For instance, when
compiling to x86 hardware, which supports the relatively-strong total store order
(TSO) memory model [OSS09], a compiler that preserves TSO behavior guaran-
tees TSO semantics at the programming language level even for racy programs.
Data-race-free programs continue to enjoy SC semantics in this scenario. The
result is a language-level memory model that is stronger and simpler than the
current memory-model proposals for C++ [BA08, BOS11| and Java [MPAO5],

given that programs may contain data races.
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L1: t = X*2;

L1: t = X*2; L2: u = Y;

L2: u = Y; [ WB: v =t;

L3: v = X*2; C3: if(X modified since L1)
L3: v = X*2;

(a) (b)
Figure 5.2: Performing common subexpression elimination while guaranteeing SC. The inter-

ference check at C3 ensures that the value of X has not changed since last read at L1. This
allows the compiler to reuse the value of X*2 computed in L1 without violating SC.

5.1.3 Speculative Optimization For SC-Preservation

While the cost of an SC-preserving compiler is much less than previously as-
sumed, one possible concern is that some applications might be unwilling to pay
this cost, however small. Nevertheless, one should exhaust possible avenues for
improving the performance of SC-preservation, such as more sophisticated static
and dynamic analyses, before exposing a relaxed program semantics to the pro-

grammer.

In this vein, consider the fact that many of the disabled optimizations respon-
sible for lost performance in the SC-preserving compiler involve an eager load.
For instance, the elimination of the expression X*2 in Figure 5.1 can be con-
sidered as performing the load of variable X eagerly at line L1 instead of at L3.
Other eager-load optimizations include constant propagation, copy propagation,
partial-redundancy elimination, global value numbering, and common cases of
loop-invariant code motion. Experiments show that fully enabling these eager-
load optimizations in the SC-preserving compiler reduces the maximum slowdown

of any benchmark from 34% to 6.5%.

§5.4 explains how to enable eager-load optimizations without violating SC.
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Compiler-inserted interference checks are used to dynamically ensure the cor-
rectness of optimizations that cannot be statically validated as SC-preserving.
Figure 5.2 demonstrates this idea. The figure shows the code from Figure 5.1(a)
and its transformation with an interference check. For the CSE optimization
to be sequentially valid, the compiler already ensures that the variable X is not
modified by instructions between L1 and L3. The interference check lifts this cor-
rectness requirement to concurrent programs by ensuring that no other thread
has modified X since last read at L1. If the check succeeds, the program can
safely reuse the earlier computation of X*2; if not, the program reverts to the

unoptimized code.

These interference checks are a form of targeted, compiler-directed data race
detection. They indicate that races must be detected for a particular location
during execution of a particular code region. Furthermore, the detection mecha-
nism can be conservative (that is, it can report a false positive), without causing
problems since the compiler is required to insert code to recover in case of a race.
This fine-grained detection is quite different from the detection required by drfx,
which cannot report false races and which must perform detection for all memory

accesses.

The interference checks are inspired by a common hardware speculation mech-
anism [GGHO91] that is used to safely strengthen hardware memory models. This
mechanism allows a processor to track cache-coherence messages to conservatively
detect when a particular memory location may have been modified by another
processor. An extension of this speculation mechanism can be used to discharge
interference checks efficiently. §5.5 describes a simple interface for exposing this
capability to the compiler, based on the Itanium architecture’s design of a similar

feature [Ita02]. A hardware simulator supporting the speculation mechanism and
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a) redundant load:  t=X; u=X; L[_IFX; u=t;
b) forwarded load:  X=t; u=X; [_XFt; u=t;
c) dead store: X=t; X=u; [Xru;
d) redundant store: t=X; X=t; [1FX;

Figure 5.3: SC-preserving transformations

a simulation study on 15 parallel programs from the SPLASH-2 and PARSEC
benchmarks are described in §5.6. By incorporating interference checks into a
single optimization pass, the average performance overhead of the SC-preserving
compiler on simulated TSO hardware is reduced from 3.4% to 2.2% and the

maximum overhead is reduced from 23% to 17%.

5.2 Compiler Optimizations as Memory Reorderings

In this section, compiler optimizations are classified based on how they affect the

memory reorderings of the program [AG96, SA0S|.

5.2.1 SC-Preserving Transformations

Informally, the (SC) behaviors of a program can be represented as a set of inter-
leavings of the individual memory operations of program threads that respect the
per-thread program order. A compiler transformation is SC-preserving if every
behavior of the transformed program is a behavior of the original program. Note

that it is acceptable for a compiler transformation to reduce the set of behaviors.

Transformations involving thread-local variables and compiler-generated tem-
poraries are always SC-preserving. Furthermore, some transformations involving

a single shared variable are SC-preserving [SA08|. For example, if a program
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performs two consecutive loads of the same variable, as in Figure 5.3(a), the
compiler can remove the second load. This transformation preserves SC as any
execution of the transformed program can be emulated by an interleaving of the
original program where no other thread executes between the two loads. On the
other hand, this transformation reduces the set of behaviors, as the behavior in

which the two loads see different values is not possible after the transformation.

Similar reasoning can show that the other transformations shown in Figure 5.3
are also SC-preserving. Further, a compiler can perform these transformations
even when the two accesses on the left-hand side in Figure 5.3 are separated by

local accesses, since those accesses are invisible to other threads.

5.2.2 Ordering Relaxations

Optimizations that are not SC-preserving change the order of memory accesses
performed by one thread in a manner that can become visible to other threads.
We characterize these optimizations based on relaxations of the following ordering

constraints among loads and stores that they induce: L - L, S - L, S - S, and

L - S.

Consider the CSE example in Figure 5.1(a). This optimization involves re-
laxing the L — L constraint between the loads at L2 and L3, moving the latter
to be performed right after the first load of X at L1, and eliminating it using the
transformation in Figure 5.3(a). If the example contained a store, instead of a
load, at L2, then performing CSE would have involved an S - L relaxation. We
classify an optimization as an eager load if it only involves L — L and S - L re-
laxations, as these optimizations involves performing a load earlier than it would

have been performed before the transformation.

Another example of an eager load optimization is constant/copy propagation
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u = X*X;
for(.. . ){ for(...){
L1: X = 1; L1: X = 1;
L2: P = Q; [ 1L2: P=Q; P = 0 1 P=Q
L3: t = X; L3: t =1; € = XX t = u;
3 }
(a) (b)

Figure 5.4: Examples of eager-load optimizations include constant/copy propagation (a) and
loop-invariant code motion (b). Both involve relaxing the L - Land S - L ordering constraints.

X =1; ; t =X; t =X;
P=0Q; 1P =0Q; P =0Q; 1P =0Q;
X =2; X =2; X =t; ;

(a) (b)

Figure 5.5: (a) Dead store elimination involves relaxing the S - S and S — L constraints. (b)
Redundant store elimination involves relaxing the L -» S and S - S constraints.

as shown in Figure 5.4(a). In this example, the transformation involves moving
the load of X to immediately after the store of X (which requires L - L and
S - L relaxation with respect to the P and Q accesses) and then applying the
transformation in Figure 5.3(b). The loop-invariant code motion example in
Figure 5.4(b) involves eagerly performing the (possibly unbounded number of)
loads of X within the loop once before the loop. This also requires relaxing L — L
and S — L ordering constraints due to the store and load to shared variables P

and Q respectively.

Figure 5.5 shows examples of optimizations that are not eager loads. The

dead-store elimination example in Figure 5.5(a) involves relaxing the S - S and
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S — L constraints by delaying the first store and then applying the SC-preserving
step of combining the adjacent stores as in Figure 5.3(c). Figure 5.5(b) shows
an example of a redundant store elimination that involves eagerly performing
the store of X by relaxing the L — S and S — S ordering constraints and then

applying the transformation in Figure 5.3(d).

5.3 An SC-Preserving Modification to LLVM

This section describes the design and implementation of the optimizing SC-
preserving compiler on top of LLVM and evaluates the compiler’s effectiveness
in terms of performance of the generated code versus that of the baseline LLVM

compiler.

5.3.1 Design

As described in the previous section, we can characterize each compiler optimiza-
tion’s potential for SC violations in terms of how it reorders memory accesses. In
order to build the SC-preserving compiler, each transformation pass performed
by LLVM was examined to determine whether or not it could potentially reorder
accesses to shared memory. The passes were further categorized based on what

types of accesses might be reordered.

Perhaps surprisingly, many of LLVM’s passes do not relax the order of mem-
ory operations at all and these SC-preserving passes can be left unmodified.
These passes include sparse conditional constant propagation, dead argument
elimination, control-flow graph simplification, procedure inlining, scalar replica-
tion, allocation of function-local variables to virtual registers, correlated value

propagation, tail-call elimination, arithmetic re-association, loop simplification,
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Table 5.1: This table lists the passes performed by a standard LLVM compilation for an x86
target that have the potential to reorder accesses to shared memory. The table indicates which
memory orderings may be relaxed and whether the SC compiler disables the pass entirely or
modifies it to avoid reordering.

Short Description L-L|L-s|[s-L|s-s | SC Vers.
Nm

LLVM IR Optimization Passes

inst- Performs many simplifications including algebraic yes no yes no modified
combine simplification, simple constant folding and dead
code elimination, code sinking, reordering of
operands to expose CSE opportunities, limited
forms of store-to-load forwarding, limited forms of
dead store elimination, and more.

arg- Promotes by-reference parameters that are only yes no yes no disabled
promotion| read into by-value parameters; by-value struct
types may be changed to pass component scalars
instead.

jump- Recognizes correlated branch conditions and yes no yes no modified
threading | threads code directly from one block to the cor-
related successor rather than executing a condi-
tional branch. While this threading in itself would
not reorder memory accesses, this pass performs
some partially redundant load elimination to en-
able further jump threading, and that may have
the effect of performing an eager load.

licm Performs loop-invariant code motion and register yes yes yes yes modified
promotion.
gvn The global value numbering pass performs trans- yes no yes no modified

formations akin to common subexpression elimina-
tion, redundant and partially redundant load elim-
ination, and store-to-load forwarding.

memcpy- | Performs several optimizations related to mem- no yes no yes disabled
opt set, memcpy, and memmov calls. Individual
stores may be replaced by a single memset. This
can cause observable reordering of store opera-
tions (e.g. A[0]=-1; A[2]=-1; A[1]=-1 becomes
memset(A,-1,sizeof(*A)*3). This pass can also
introduce additional loads not present in the orig-
inal program through a form of copy propagation.

dse Performs dead store elimination and redundant no yes yes yes disabled
store elimination as described in Figure 5.5

x86 Code Generation Passes

seldag Builds the initial instruction selection DAG. Per- yes no no no modified
forms some CSE during construction.
node- Performs forms of CSE, constant folding, strength yes yes no no modified

combine reduction, store-to-load forwarding, and dead store
elimination on the selection DAG. Can reduce
atomicity of certain operations; for instance a store
of a 64-bit float that can be done atomically on
some architectures may be changed to two 32-bit
integer stores. Also, bit-masking code may be rec-
ognized and changed to smaller operations without
masking. This can have the effect of reordering a
store with prior loads.

scheduling| Schedules machine instructions. yes no no no modified
machine- | Sinks load instructions and dependent computa- yes no no no modified
sinking tion to successor blocks when possible to avoid ex-

ecution on code paths where they are not used.
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loop rotation, loop unswitching, loop unrolling, unreachable code elimination,

virtual-to-physical register allocation, and stack slot coloring.

Other LLVM optimizations can relax the order of memory operations. Ta-
ble 5.1 lists these optimization passes and classifies the kinds of relaxations that
are possible in each. To ensure that the compiler would be SC-preserving, a few
of these passes were disabled and the remaining passes were modified to avoid

reordering accesses to potentially shared memory.

5.3.2 Implementation

The SC-preserving compiler does not perform any heavyweight and/or whole-
program analyses to establish whether or not a location is shared (e.g., thread-
escape analysis). Simple, conservative, local information is used to decide if
a location is potentially shared. During an early phase of compilation, LLVM
converts loads and stores of non-escaping function-local variables into reads and
writes of virtual registers. Operations on these virtual registers can be freely
reordered. In certain situations, structures that are passed by value to a func-
tion are accessed using load and store operations. The SC-preserving compiler
recognizes these situations and allows these memory operations to be reordered
in any sequentially valid manner. In addition, shared memory operations may be
reordered with local operations. Thus, for instance, it is safe to allow the “inst-
combine” pass to transform t=X; t+=u; t+=X; into t=X«1; t+=u; when both t
and U are local variables.

Incorporating the necessary modifications into LLVM was a fairly natural and
noninvasive change to the compiler code. LLVM already avoids reordering and

removing loads and stores marked as being volatile. Therefore, in the IR opti-

mization passes existing code written to handle volatiles could often be reused
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float Distance(float* x,

float* y, int n)

float sum = 0;

int i=0;

for(i=0; i<n; i++){
sum += (x[i]-y[iD)
*(x[11-y[iD;
// Note: x[i] is *(x+i*4)
// and y[i] is *(y+i*4)

return sqrt(sum);

float Distance(float* x,

float* y, int n)

register float sum = 0;

register px = x;

register py = y;

register rn = n;

for(; rn-->0; px+=4,py+=4){

sum += (*px-*py)
“CPx-*py);

return sqrt(sum);

float Distance(float* x,

float* y, int n)

register float sum = 0;

register px

1
X

register py =

|
<

1
>

register rn
for(; rn-->0; px+=4,py+=4){

register t = (*px-*py);

sum += t*t;

return sqrt(sum);

(a) (b) ()

Figure 5.6: Example demonstrating optimizations allowed in an SC-preserving compiler. The
function in (a) computes the distance between two n-dimensional points X and y represented
as arrays. An SC-preserving compiler is able to safely perform a variety of optimizations,
leading to the version in (b). However, it cannot eliminate the common-subexpression *px -
*py involving possibly-shared accesses to the array elements. A traditional optimizing compiler
does not have this restriction and is able to generate the version in (c).

in order to restrict optimizations on other accesses to shared memory. The pri-
mary mechanism by which reordering was avoided during the x86 code generation
passes was by “chaining” memory operations to one another in program order in
the instruction selection DAG. This indicates to the scheduler and other passes

that there is a dependence from each memory operation to the next and prevents

them from being reordered.

5.3.3 Example

The example in Figure 5.6 helps illustrate why an SC-preserving compiler can
still optimize programs effectively. The source code shown in part (a) of the figure

is a simplified version of a performance-intensive function in one of the bench-
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marks. The function calculates the distance between two n-dimensional points
represented as (possibly shared) arrays of floating point values. In addition to per-
forming the floating point operations that actually calculate the distance, directly
translating this function into x86 assembly would allocate space on the stack for
the locally declared variables and perform four address calculations during each
iteration of the loop. Each address calculation involves an integer multiply and
an integer add operation as hinted by the comments in Figure 5.6 (a). The SC-
preserving compiler is able to perform a variety of important optimizations on

this code:

e Since the locally declared variables (including the parameters) do not escape

the function, they can be stored in registers rather than on the stack.

e CSE can be used to remove two of the address calculations since they are

redundant and only involve locals.

* Loop-induction-variable strength reduction allows us to avoid the multipli-
cation involved in the two remaining address calculations by replacing the
loop variable representing the array index with a loop variable representing

an address offset that starts at zero and is incremented by 4 each iteration.

e Using loop-invariant code motion (and associativity of addition), we can
increment the array addresses directly during each iteration rather than

incrementing an offset and later adding it to the base addresses.

The final result of applying the above SC-preserving optimizations is shown in
part (b) of the figure (using C syntax rather than x86 assembly). The fully
optimizing compiler that does not preserve SC is able to perform one additional

optimization: it can use CSE to eliminate the redundant floating point loads and
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subtraction in each iteration of the loop. The resulting code is shown in part (c)

of the figure.

5.3.4 Evaluation

Figure 5.7: Performance overhead incurred by various compiler configurations compared to the
stock LLVM compiler with -03 optimization for SPEC CINT2006 benchmarks.

This section evaluates the SC-preserving compiler on a variety of sequen-
tial and parallel benchmarks. Even though sequential consistency only concerns
multi-threaded programs, sequential benchmarks are included in this evaluation
since optimizing compilers are tuned to perform well for these benchmarks. The
experimental results indicate that the vast majority of the optimizations in LLVM

responsible for good performance are in fact SC-preserving.

All programs were executed on an Intel Xeon machine with eight cores, each of
which supports two hardware threads and 6 GB of RAM. Each program was eval-
uated using three compiler configurations. The configuration “No optimization” is
the stock LLVM compiler with all optimizations disabled; “Naive SC-preserving”
enables only those LLVM passes that are already SC-preserving, because they
never reorder accesses to shared memory; and “SC-preserving” is the full SC-

preserving compiler, which includes modified versions of some LLVM passes.

Figure 5.7 shows the results for the SPEC CINT2006 benchmarks. The figure

shows the performance overhead of each benchmark under the three compiler
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configurations, normalized to the benchmark’s performance after being compiled
with the stock LLVM compiler and all optimizations enabled (-03). With no
optimizations, the benchmarks incur an average 140% slowdown. Re-enabling
just the optimizations guaranteed to preserve SC reduces this overhead all the
way to 34%. The full SC-preserving compiler reduces the average overhead to

only 5.5%, with a maximum overhead for any benchmark of 28%.

The results for parallel applications from the SPLASH-2 and PARSEC bench-
mark suites are shown in Figure 5.10 from Section 5.6 (the last two compiler
configurations shown in the figure pertain to the notion of interference checks
that will be introduced in the next section). The results agree with those of the
sequential benchmarks. Without optimizations the benchmarks incur an average
153% slowdown. Re-enabling “naively SC” optimizations reduces the overhead
to 22%, and the full SC-preserving compiler incurs an average overhead of only

2.7%, with a maximum overhead for any benchmark of 34%.

5.4 Speculation for SC-Preservation

As shown in Table 5.1, most of the optimization passes that reorder shared mem-
ory accesses only relax the L - L and S - L orderings. In other words, these
optimizations have the potential to perform eager loads but no other memory
reorderings. In order to evaluate how important these eager-load optimizations
are for performance, experiments for the parallel benchmarks were run using the
SC-preserving compiler with the four (SC-violating) eager-load IR optimization
re-enabled. The “Only-Eager-Loads” configuration in Figure 5.10 illustrates the
results. The benchmark with the largest overhead in the SC-preserving compiler,
facesim, rebounded from a 34% slowdown to only a 6.5% slowdown, and many

other benchmarks regained of all of their lost performance.
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This experiment motivates the desire to speculatively perform eager-load op-
timizations and then dynamically recover upon a possible SC violation in order
to preserve SC. This section describes how the SC-preserving compiler can per-
form such speculation via a notion of interference checks, which conservatively
determine whether a memory location’s value has been modified since it was last
read by the current thread. First the instruction set architecture (ISA) exten-
sions in the hardware that support interference checks will be presented. Then,
a strategy for using these new instructions to speculatively perform eager-load

optimizations in the compiler is described.

5.4.1 ISA Extensions

Interference checks rely on three new instructions to be provided by the archi-
tecture: m.load (monitored load), m.store (monitored store), and i.check (in-
terference check). The m.load and m.store instructions behave as regular loads
and stores but additionally instruct the processor to start monitoring possible
writes to the memory location being accessed. We assume that the processor
can monitor up to a maximum of N locations simultaneously. These instructions
therefore take as an additional parameter a tag from 0 to N — 1, which is used

as an identifier for the memory location being monitored.

The 1.check instruction provides a mechanism to query the hardware as to
whether or not writes could have occurred to a set of memory locations. It accepts
an N-bit mask and a recovery branch target as a parameter. The instruction
conditionally branches to the recovery target based on whether or not writes may
have occurred for any of the monitored memory addresses indicated by the mask.
If the instruction does not branch, it is guaranteed that no thread has written to

any of the locations indicated by the mask since the instructions that initiated
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DOM”

ORIG”
DOM

i.chk monitoredAccesses, rcvr
ORIG —1

jump cont
CONTINUE

rcvr: RECOVER
cont: CONTINUE’

Figure 5.8: Introducing interference checks when performing eager-load transformations in
ORIG, a single-entry, single-exit region of code with no stores. Either or both of DOM” and
ORIG” contain the definitions for monitoredAccesses for the eager loads involved in the trans-
formation.

their monitoring were executed. When using an 1.check in the examples below,

we will list the tags explicitly for clarity rather than using a bit mask.

Note that the use of tags to identify accesses, rather than simply identifying
them with the address they access, allows the compiler to safely and accurately
use interference checks in the face of potential aliasing. The compiler may end
up simultaneously monitoring two accesses to the same location using separate
tags due to unknown aliasing. The hardware will correctly report interference
between the time when the monitored access for each tag was executed and the
time of the §.check for that tag. This design places the burden on the compiler
to manage the hardware resources available for monitoring. It must ensure that
when it reuses a tag, the access that was previously assigned to that tag no longer

needs to be monitored.

5.4.2 Interference Check Algorithm

Figure 5.8 illustrates how the compiler performs eager load optimizations with
interference checks. In the figure, ORIG represents a store-free block of code
in which we would like to perform eager load optimizations (e.g., eliminating

a load and using a value loaded or stored earlier). DOM represents code that

101



dominates ORIG and which may contain accesses we would like to monitor and
reuse when performing the optimization. CONTINUE is the code that follows ORIG.
Performing SC-preserving eager load optimizations may require transforming all
of these blocks of code, as well as adding a block of code called RECOVER which is
essentially a copy of the original ORIG block to be used when potential interference
occurs. Informally, the algorithm works on code in Static Single Assignment form

(SSA)[CFR91] in the following steps:

1. Find a contiguous, single-entry, single-exit block of code without stores.

Call this block ORIG.

2. Create a branch target at the first instruction after ORIG. Call the following

instructions, starting at this new target, CONTINUE.

3. Make a copy of ORIG in its entirety and call it RECOVER. Note that, since we
are manipulating SSA code, all local and temporary values will be given a

new SSA name in the copied code.

4. Apply eager-load transformations in ORIG and call the resulting block of
code ORIG”. The transformations may include any combination of the fol-

lowing:

(a) Eliminate a load and replace its uses with a value from a previous
load or store to that address that dominates the current load. This
prior memory access may or may not be in ORIG. Convert this previous
memory access to an m.load or m.store if it is not already one. If
multiple definitions reach the load to be removed, all of them have to

be converted.

(b) Hoist a load from ORIG to a position dominating all of its uses, poten-

tially reordering with previous load and/or store operations. Its new
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position may or may not be in ORIG. Convert the hoisted load to an

m. load.

We'll call the code that dominated ORIG and may now contain monitored
instructions DOM”. Each access that is converted to a monitored instruction
must use a distinct tag, so the compiler is limited to at most N eager-load

conversions in this step.

. Perform any desired SC-preserving optimizations on the code remaining in

ORIG”.

. Insert an 1.check instruction after ORIG” that checks for interference on
all accesses that were marked as monitored by step 4 and branches to the

recovery code on failure.

. For each value that is live-out of ORIG, transform CONTINUE by inserting
an SSA phi instruction at the beginning that chooses the appropriate value
based on whether code flowed from ORIG” or RECOVER. Call the transformed
block CONTINUE”.

Implementation and Example

The SC-preserving compiler implementation modifies LLVM’s global value num-

bering (GVN) pass to make use of interference checks in order to allow more

aggressive optimization while maintaining SC. The GVN pass performs a variety

of eager-load optimizations, including CSE, partial redundancy elimination, and

copy/constant propagation. The technique could also apply to other passes that

perform eager load optimizations..

Figure 5.9 shows some LLVM IR code that calculates X2+Y+X2, along with the

transformations that take place on it during the GVN pass in order to eliminate
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the redundant computation of X?. Virtual registers, or temporaries, are prefixed
by the % symbol and are in SSA form. First, the GVN pass removes the second
load of memory location X (which defines %5) and replaces all of its uses with the
first load of X. After this load elimination, we are left with the code in (b), where
it is clear that the second mul instruction is unnecessary, so it is removed and its
use is replaced with the previously calculated value in virtual register %2. The
final code with the load and multiply eliminated is shown in (c). Figure 5.9(d)
shows the result of applying the above algorithm to add interference checks and

make this transformation SC-preserving.

5.4.4 Correctness of the Algorithm

Let us now establish that the above algorithm for inserting interference checks is
SC-preserving. First consider the case when the interference check fails. Neither
ORIG nor ORIG” contains any stores. Thus, the state of non-local memory does not
change during the execution of ORIG”. As the code is in SSA form, all the effects
of ORIG” on local state become dead once the code switches to RECOVER, which
is a copy of ORIG. Hence, other than needlessly executing ORIG”, the transformed
program has the same behavior as the original program when the interference

check fails.

Now consider the case when the interference check succeeds. This means that
each monitored memory location is guaranteed to be unmodified from the start of
monitoring through the execution of ORIG”. The key property of the algorithm
is that every memory location involved in an eager load is monitored from the
point where the eager load occurs until at least the point at which the load would
have occurred in the original program (since it would have occurred somewhere

within ORIG). Thus the value loaded in the optimized code is the value that would
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have been read by the original program, thereby preserving SC.

5.5 Hardware Support for Interference Checks

In this section hardware support for efficiently implementing the m. load, m.store,
and 1.check instructions is described. The hardware changes required are sim-
ple and efficient, and therefore practical. In fact, the newly proposed instructions
are similar to the data speculation support in the Itanium’s ISA [Ita02|, which
was designed to enable speculative optimizations in a single thread in the face of
possible memory aliasing. The design safely supports both the goal of ensuring
sequential consistency as well as Itanium’s speculative load optimizations. The
required hardware support is simple: a structure to store N addresses (32 in this
implementation), each with an associated bit indicating whether the address was

possibly written.

5.5.1 Hardware Design

Interference checks are supported using a structure called the Speculative Memory
Address Table (SMAT) which is similar to the Advanced Load Address Table
(ALAT) used in Itanium processors [[ta02]. SMAT is a Content-Addressable-
Memory (CAM). It has N entries, enabling the compiler to monitor interference
on N addresses at any instant of time. Each entry in the SMAT contains an

address field and an interference bit.

We collectively refer to m.load and m.store instructions as monitor instruc-
tions. As described in the previous section, each monitor instruction contains a
tag between 0 and N — 1. When executing a monitor instruction, the hardware

stores the address accessed by that instruction in the SMAT entry specified by the
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tag, resets that entry’s interference bit, starts to monitor writes to the address,

and executes the memory operation requested by the instruction.

A processor core can easily detect when another processor core wants to write
an address by monitoring invalidation coherence requests. When a processor core
receives an invalidation to a cache block, the interference bit of each SMAT entry
holding an address from that block is set. The interference bit of an entry is also
set when a store to the associated address commits from the current processor.
While the latter behavior is not necessary to preserve SC, it enables Itanium-style

speculative load optimizations [Ita02].

The compiler generates an 1.check instruction with an N-bit mask to check
for interference on a maximum of N different addresses. Each bit in the mask
corresponds to an entry in the SMAT. The hardware executes the 1.check in-
struction by checking the interference bits of the SMAT entries specified in its
mask. If any of the checked interference bits is set, the hardware branches to the

recovery code whose target is specified in the 1.check instruction.

The hardware updates the SMAT for a monitor instruction and executes
I .check instructions only when they are ready to commit from a processor core’s
instruction window. This ensures that the hardware does not update SMAT en-
tries speculatively while executing instructions on an incorrect path taken due to
branch misprediction. Nevertheless, the semantics of these instructions requires
that the hardware notice interference from the moment the instruction executes
(i.e., when an m.load receives its value from the cache). An existing hardware
mechanism, described in §5.5.2, can be relied upon to perform the monitoring

between the time an m.load executes and the time it commits from the ROB.
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5.5.2 Relation To In-Window Hardware Speculation

The approach of monitoring invalidation coherence requests to detect interference
for a set of addresses is similar to what many processors already implement for
efficiently supporting T'SO at the hardware level [GGH91|. TSO does not allow a
load to be executed before another load in program order even if they are accessing
different addresses. To achieve good performance, Gharachorloo et al. [GGH91]
proposed to speculatively execute loads out-of-order. However, instructions are
still committed in order from a FIFO queue called the reorder buffer (ROB).
Therefore, to detect misspeculation the hardware simply needs to detect when
another processor tries to write to an address that has been read by a load that
is yet to commit from the ROB. This is achieved by monitoring the address
of invalidation coherence requests from other processor cores. On detecting a
misspeculation, the hardware flushes the misspeculated load and its following

instructions from the pipeline and restarts execution.

The proposed hardware design essentially extends the above hardware mecha-
nism to detect interference for addresses of certain memory operations (specified
by the compiler) even after they are committed from the ROB. This allows a
compiler to eagerly execute loads and later check for interference at the original
location of the load in the source code. On an m.load, the monitoring needs to
start logically when the processor receives the value of the load. However, the
SMAT entry is updated only when the instruction is committed. In between the
two events, when the load instruction is in flight in the ROB, the monitoring

performed above is sufficient to provide the required semantics of the 1.check.
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5.5.3 Conservative Interference Checks

While an implementation of interference checks must detect interference whenever
it occurs, it is legal to signal interference when none actually exists. Such false
positives are acceptable in this design because they simply result in execution of
the unoptimized code, losing some performance but maintaining SC. The ability
to tolerate false positives avoids a number of potentially complex issues and keeps

the hardware simple.

First, the hardware monitors interference at the cache block granularity as
coherence invalidation messages operate at cache block level. This may result in
false positives when compared to a detector that monitors byte-level access. But
the probability that a cache block gets invalidated between a monitor instruction
and an 1.check is very low. Moreover, frequent invalidations or “false sharing”
of hot cache lines result in performance degradations and thus can expected to

be rare in well-tuned applications.

Second, SMAT entries for a cache block that gets evicted due to capacity
constraints are conservatively invalidated. Monitoring interference for uncached
blocks would require significant system support (similar in complexity to un-

bounded transactional memory systems [CNV06]).

Third, in ISAs like X86 one memory instruction could potentially access two or
more cache lines, but a SMAT entry can monitor only one cache block address. To
address this problem, if a monitor instruction accesses more than one cache block,
the interference bit for the SMAT entry is immediately set. This could cause a
future 1.check to fail forcing execution down an unoptimized path. Fortunately,

such unaligned cache accesses are rare.

Finally, a context switch may occur while multiple addresses are monitored
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in the hardware SMAT. Instead of virtualizing this structure, the interference bit
in all SMAT entries is set after a context switch. This may cause future i.check
instructions from a thread to fail unnecessarily when it is context switched back
in, but this overhead is likely to be negligible since context switches are relatively

rare when compared to the frequency of memory accesses.

5.6 Results

The experimental results relating to the performance of the base SC-preserving
compiler were discussed in Section 5.3.4. In this section we discuss additional ex-
periments which evaluate the potential effectiveness of using interference checks.
In addition, the performance of the SC-preserving compilers is compared to a fully
optimizing compiler running on simulated hardware that uses a DRF0O memory
model which is more relaxed (allows more hardware reorderings) than TSO. This
gives a sense of the performance burden of providing a strong, end-to-end memory

model across hardware and software.

5.6.1 Compiler Configurations

As described in Section 5.3.4, the baseline compiler is the out-of-the-box LLVM
compiler with all optimizations (-03). The experiments on parallel benchmarks
use the three compiler configurations discussed in that section (“No optimization”,
“Naive SC-preserving”, and “SC-preserving”), as well as two additional configu-
rations. The “Only Eager Loads” configuration includes all the optimizations
from the SC-preserving compiler plus the unmodified (SC-violating) version of
all IR passes that perform only eager load optimizations (GVN, instcombine, arg-

promotion, and jump-threading). This configuration is intended to give a sense

109



Table 5.2: Baseline IPC for simulated DRF0 hardware running binaries from the stock LLVM

compiler.

Application Avg. IPC Application | Avg. IPC

blackscholes 1.94 bodytrack 1.61

fluidanimate 1.28 swaptions 1.67

streamcluster 1.42 barnes 1.57

water(nsquared) 1.66 water(spatial) 1.66

cholesky 1.78 fft 1.39

lu(contiguous blocks) 1.64 radix 0.99

of the opportunity for improvement available to optimizations based on the in-
terference check technique and is only used for experiments on native hardware
and not on simulated machines. Finally, the “SC-preserving+GVN w/ ICheck”
configuration includes all of the optimizations from the SC-preserving compiler
plus a modified GVN pass that is made SC-preserving using interference checks
and recovery code. When this configuration targets a simulated machine with
appropriate support, it emits m. load, m.store, and 1.check instructions. But
when it targets native hardware, the configuration emits m. load and m.store in-
structions as regular loads and stores and emulates a never-failing 1.check using
a logical comparison of constant values followed by a conditional branch. Thus,
when running on the native machine, the overhead caused by increased code size
and the additional branch is captured, but the effect of actual or false conflicts
on monitored accesses is not. In a real implementation, however, we expect the

i .check instruction to be more efficient than a branch.

5.6.2 Benchmarks

The performance of the various compiler configurations was evaluated on the
PARSEC [BKS08| and SPLASH-2 [WOT95| parallel benchmark suites. Table 5.2

lists the average instructions executed per cycle (IPC) for each of these bench-
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marks when compiled with the stock LLVM compiler at -03 optimization and
run on simulated DRF0 hardware which implements weak consistency and is de-
scribed below. All of these benchmarks are run to completion. For experiments
on actual hardware, the native input for PARSEC benchmarks was used, while
for the simulated machines, the sim-medium input set was used to keep the sim-
ulation time reasonable. (Since streamcluster was especially slow to simulate,
the sim-small input was used.) For SPLASH-2 applications, the default inputs
were used for simulation while inputs were modified to increase the problem size
for experiments on native hardware. Correct behavior of the benchmarks under
all compiler configurations was verified by using a self-testing option when avail-
able, or by comparing results with those produced when compiling the benchmark

using gec.

5.6.3 Experiments on Native Hardware

All six compiler configurations (including the baseline) were evaluated on an In-
tel Xeon machine with eight cores, each of which supports two hardware threads
and 6 GB of RAM. Each benchmark was run five times for each compiler con-
figuration and the execution time was measured. (The results given here are
for CPU user time, though the results for total time elapsed were very simi-
lar.) The overheads given are relative to the baseline, fully-optimizing compiler
and are shown in Figure 5.10. Let’s consider the base SC-preserving compiler
first. Notice that for many of the benchmarks, restricting the compiler to per-
form only SC-preserving optimizations has little or no effect. In fact, in some
cases, disabling these transformations appears to speed the code up, indicating
that the compiler ought not to have performed them in the first place. There

are several benchmarks, however, for which the SC-preserving compiler incurs a
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noticeable performance penalty, 34% in the case of facesim.! On average, we
see a 2.7% slowdown. Consider now the compiler configuration which re-enables
various eager load optimizations. Several of the applications which suffered a
significant slowdown under the SC-preserving compiler regain much of this per-
formance in this configuration. Most notably, facesim vastly improves to 6.5%
and bodytrack, streamcluster, and x264 recover all (or nearly all) of their
lost performance. On average, the compiler with eager load relaxations enabled
is as fast as the stock compiler, indicating that the technique of using interfer-
ence checks to safely allow eager load optimizations holds significant promise.
Finally, the rightmost bar in the graph shows the slowdown of the aggressive
SC-preserving compiler that includes the modified GVN pass with interference
checks. (Remember, we are running on a native machine in this set of exper-
iments, so a never-fail load check is emulated.) This technique regains a good
portion of the performance lost by the base SC-preserving compiler for facesim,
reducing the overhead from 34% to under 20%, with streamcluster and x264

showing a more modest improvement.

5.6.4 Experiments on Simulated Machines

To study the performance of interference checks in hardware, the benchmarks

were run on a cycle-accurate, execution driven, Simics [MCEOQ2] based x86_ 64

! Additional profiling and investigation revealed that the slowdown in facesim was largely
caused by a commonly invoked 3x3 matrix multiply routine. The SC-preserving compiler was
unable to eliminate the two redundant loads of each of the 18 shared, floating point matrix
entries involved in the calculation. This resulted in 36 additional load instructions for each
matrix multiplication performed by the SC-preserving version of facesim. The modified GVN
pass with interference checks is able to relegate the 36 additional loads to the recovery code,
eliminating them on the fast path. A straightforward rewrite of the source code to first read
the 18 shared values into local variables would have allowed the base SC-preserving compiler
to generate the fully optimized code.

112



Table 5.3: Simulated processor configuration for evaluation of SC-preserving compiler with
interference checks.

Processor 4 core CMP. Each core operating at 2Ghz.

Fetch/Exec/Commif 4 instructions(maximum 2 loads or 1 store) per cycle in each core.

Width

Store Buffer TSO: 64 entry FIFO buffer with 8 byte granularity. DRF0, DRFx: 8
entry unordered coalescing buffer with 64 byte granularity.

L1 Cache 64 KB per-core (private), 4-way set associative, 64B block size, 1-cycle
hit latency, write-back.

L2 Cache 1MB private, 4-way set associative, 64B block size, 10-cycle hit latency.

Coherence MOESI directory protocol

Interconnection Hierarchical switch, 10 cycle hop latency.

Memory 80 cycle DRAM lookup latency.

| SMAT | 32 entries CAM structure, 1 cycle associative lookup

simulator called FeS2 [FeS]. The benchmarks were also run on simulated TSO
hardware, with and without support for interference checks, and compared it to
DRFO0 hardware that supports weak consistency. The processor configuration
that was modelled is shown in Table 5.3. For the TSO simulation, a FIFO store
buffer that holds pending stores and retires them in-order was used. Speculative
load execution support [GGH91]| was also modelled. The weakly consistent DRF0

simulation allowed stores and loads to retire out-of-order.

Figure 5.11 shows the results of the simulation study. When compared to
the fully optimizing compiler configuration running on the simulated DRF0 ma-
chine, the performance overhead of using the SC-preserving compiler on simulated
TSO hardware is 3.4% on average. This cost is reduced to 2.2% when the GVN
pass with interference checks is used. For several programs that incur significant
overhead, such as bodytrack and facesim, the interference check optimizations
reduce the overhead to almost zero. For streamcluster, the overhead is reduced
from about 23% to 17%. The frequency of load-check failures is, on average, only
about one in ten million instructions. This indicates that the performance over-

head due to false positives arising from several hardware simplifications described
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in Section 5.5.3 is negligible.

5.7 Conclusion

Sequential consistency is an intuitive memory model, but is widely believed to be
difficult or impossible to implement efficiently. The research in this chapter em-
pirically demonstrates that the performance incentive for relaxing SC semantics
in the compiler is much less than previously assumed. Building an SC-preserving
compiler required only simple modifications to LLVM, a state-of-the-art C/C--+
compiler. For a wide range of programs from the SPLASH-2, PARSEC, and
SPEC CINT2006 benchmark suites, the SC-preserving compiler results in a per-

formance overhead of only 3.8% on average with a maximum of 34% overhead.

In the case where even small overheads are unacceptable, targeted, fine-
grained, compiler-directed, conservative race detection can enable additional op-
timizations while still preserving SC semantics. Interference checks are an imple-
mentation of such a detection mechanism. They allow the SC-preserving compiler
to regain much of the performance lost due to restrictions on SC-violating com-

piler optimizations.
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Original Load Eliminated CSE SC with i.check
g
// DOM”
%l = m.load X, O
%2 = mul %1, %1
%3 = load Y
// DOM %4 = add %2, %3
. load // DOM 17 00
%1 = load X DOM
%2 = mul %1, %1 H = foad X %1 = load X /7 ORIC”
. L , %2 = mul %1, %1 - L . orig:
%3 = load Y 2 = mul %1, %1
%4 = add %2, %3 %3 = load Y %3 = load Y i.check 0, rcvr
%4 = add %2, %3 44 = add 2. %3 jump cont
1 | ﬁ ’
//0RIG
%6 = mul %1, %1 .
%6 = mul %5, %5 revr:
// CONTINUE %5 = load X
// CONTINUE hE = 0 .
//CONTINUE %7 = add %4, %2 %6 = mul %5, %5
%7 = add %4, %6
%7 = add %4, %6

(a)

(b)

()

// CONTINUE

cont:

%merge = phi (orig, %2,
rcvr, %6)

%7 = add %4, %merge

(d)

Figure 5.9: GVN first transforms program (a) into (b) by eliminating the “available load” from
X, then notices that the result of the second multiplication has already been computed and
performs common subexpression elimination to arrive at (c).
since it reorders the second load of X with the load of Y.
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Figure 5.10: Performance overhead incurred by the various compiler configurations compared

to stock LLVM compiler with -03 optimization running on native Xeon hardware for PARSEC
and SPLASH-2 benchmarks.
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Figure 5.11: Performance overhead of SC-preserving compiler on simulated TSO hardware
with and without using interference checks relative to fully optimizing SC-violating compiler
on simulated DRF0 hardware.
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CHAPTER 6

Related Work

6.1 Data Race Detection

Prior data race detection can be broadly classified into static and dynamic tech-
niques. Static techniques include those that use type-based analysis [BLR02,
FF00, SAW05| or data-flow analysis [Ste93, EA03, NAWO06, VJL07, PFHO6] to
ensure that all data accesses are consistently protected by locks. Many of these
techniques are scalable and most are complete in that they find all data races in
a program. The downside is that static techniques are inherently imprecise and
typically report a large number of false data races that place a tremendous bur-
den on the user of the tool. More importantly, these techniques are not able to
handle synchronizations other than locks, such as events, semaphores, and condi-
tion variables common in many systems programs. Thus, data accesses that are
synchronized through these mechanisms will be falsely reported as potential data
races. Model checking techniques [HIM04, QWO04]| are capable of handling such
synchronizations, but are not scalable due to the complexity of their analysis.
Dynamic analyses, like those presented in this dissertation, do not suffer from

these problems.

One of the main limitations of dynamic data race detection tools is their
high run-time overhead. There have been attempts to ameliorate the perfor-

mance cost of dynamic analysis using static optimizations for programs written
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in strongly typed languages [CLLO02]. Dynamic data race detectors for managed
code [YRCO5] also have the advantage that the runtime system already incurs
the cost of maintaining metadata for the objects, which they make use of. For
unmanaged code like C and C-++, however, the runtime performance overhead
of data race detection remains high. Intel’s ThreadChecker [SBMO06]|, for exam-
ple, incurs about 200> overhead to find data races. The detection techniques
described in this dissertation target particular problems. As such they can fail

to find certain races while still proving useful.

6.1.1 Happened-before versus Lockset Dynamic Detection

Dynamic race detection algorithms can be broadly classified into happened-before
based algorithms [Lam78, Net93, AHM91, CMN91, DS90, Cru91, Sch89, PK96,
RB00, MC91], lockset based algorithms [SBN97, PGO01, Nis04, ASW05] and hy-
brid algorithms that combine the two [DS91, YRC05, OC03, PS03].

One class of data race detectors use the lockset algorithm. The lockset algo-
rithm checks whether each shared variable in a program is consistently guarded
by at least one lock. Eraser [SBN97| implements the lockset algorithm using
instrumentation to dynamically find the data races during a program’s execu-
tion. This algorithm has been extended to object-oriented languages [PS03| and
improved for precision and performance [ASWO05, Nis04, PG01, CLL02|. The
lockset algorithm has the potential to report false positives due to conflicting
accesses that are ordered using synchronization mechanisms other than locks. A
recent work [LTQO6] reports that a lockset algorithm resulted in thousands of

false positives for scientific applications.

Happened-before-based detectors, on the other hand, check whether conflict-

ing accesses to shared variables are ordered by explicit synchronization oper-
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ations or not. Many dynamic race detectors implement the happened-before
algorithm in software[RB00|. Hardware [MC91, PT03| and Distributed-Shared-
Memory [PK96, RLI8| implementations have also been proposed to reduce the
runtime overhead of these detectors. The advantage of using a happened-before
algorithm is that it can detect the data races with no false positives, although
for programs that use mainly locks, it may detect a potential data race in the

program on fewer executions than the lockset approach would.!

LiteRace uses happened-before-based detection rather than lockset because
it aims to support applications that use a variety of synchronization primitives,
not just locks. Though the sampling technique used in LiteRace could equally
well be applied to a lockset-based detector. The detection mechanism used in
drfx can also be thought of as happened-before-based, since any races from
concurrently executing regions arise from conflicting accesses that are not ordered

by the happened-before relation.

It is also possible to combine the happened-before and lockset algorithms [DS91,
YRCO05, OC03, PS03| to get coverage and performance close to a lockset algo-
rithm, and at the same time reduce false positives using happened-before rela-

tions.

6.1.2 Sampling Techniques for Dynamic Analysis

The technique used in LiteRace was inspired by prior work in dynamic analyses
other than data race detection. Arnold et al. [ARO1] proposed sampling tech-

niques to reduce the overhead of instrumentation code in collecting profiles for

!The lockset algorithm reports a race as soon as the set of potential locks protecting a
location is determined to be empty. This can happen even on an execution/interleaving where
there is a happened-before relationship between two accesses.
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feedback directed optimizations. Chilimbi and Hauswirth proposed an adaptive
sampler for finding memory leaks [HCO04]. LiteRace extends their solution to the
sampling of multi-threaded programs, and shows that samplers can be effectively
used to find data races as well. QVM [AVYO08]| is an extension to the Java Vir-
tual Machine that provides an interface to enable dynamic checking such as heap
properties, local assertions, and typestate properties. It uses sampling to trade-
off accuracy with runtime overhead. The sampling technique used in QVM is
object-centric, in that, all the events to a sampled object’s instance are profiled.

In contrast, the samplers in LiteRace are based on the cold-region hypothesis.

6.2 Memory Models

6.2.1 Reducing the Cost of Sequential Consistency

Weak memory models are not necessary if both the compiler and the hardware
can guarantee SC without prohibitive performance cost. Prior work has explored
this possibility.

Several static analyses insert fences in a program to guarantee SC. Shasha
and Snir proposed the delay sets algorithm for this purpose [SS88|. Krishna-
murthy and Yelick [KY96| proved that computing a minimal delay set (i.e., set
of fences) for a program is NP-complete. Two recent projects, Titanium [KSYO05|
and Pensieve [SFWO05|, extend the delay set algorithm to reduce the number of
fences needed to guarantee SC. In addition, [LNG10| describes a new hardware
mechanism called a conditional fence that can reduce the cost of executing all
of the inserted fences in hardware. These analyses leverage a number of tech-
niques to determine whether a memory location can potentially be involved in

a race, including sharing inference [LAYO03|, pointer alias analysis, and thread
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escape analysis. These techniques require fairly-complex whole-program analyses
that are difficult to scale to large programs, especially for languages like C+-.
But when applicable, they guarantee end-to-end SC for all programs since the

inserted fences prevent reorderings by both the compiler and the hardware.

In contrast, the drfx model does not require expensive analysis, but does
require specialized hardware support. It allows the compiler and hardware to
freely perform sequentially valid reorderings (other than speculative accesses)
within a region (in addition, hardware can optimize across regions delimited
by soft fences) without requiring any additional static analysis. But, it only
guarantees SC for data-race-free programs and may terminate racy programs.
The SC-preserving compiler avoids introducing SC violations during compilation
using simple modular techniques and still manages to optimize effectively, but it

does not prevent hardware reorderings from violating SC.

At the hardware level, various forms of speculation have been proposed to
reduce the performance overhead of SC [RPA97, BMW09, CTMO07]. Of course,
these techniques can only guarantee SC of the compiled program and cannot
detect the non-SC behavior introduced by the compiler. Recent work on the
BulkCompiler [AQL09| addresses this problem in the context of Java programs
that use locks. The bulk compiler partitions a program into “chunks” and the
BulkSC hardware employs speculation and recovery to ensure serializable execu-
tion of chunks. Even then, all these hardware proposals above require speculative
execution, checkpointing, and rollback in case of conflicts, which tremendously
increases the hardware complexity. Unlike drfx, these proposals require possibly
unbounded resources and thus have to include appropriate mechanisms to handle

overflow cases.
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6.2.2 Always-on Race Detection and Memory Model Exceptions

Prior research has suggested using data race detection as a way to terminate
buggy programs at runtime. Elmas et al. [EQT07| augment the Java virtual ma-
chine to dynamically detect bytecode-level data races and raise a DataRaceException.
Recently, Boehm [Boe09| provided an informal argument for integrating an ef-
ficient always-on data-race detector to extend the DRF0 model by throwing an
exception on a data race. However, precisely detecting data races either incurs 8
or more performance overhead in software [FF09] or incurs significant hardware
complexity [PT03, MSQO09| despite many proposed optimizations to the basic
technique. The large overhead comes from the need to dynamically build the
happened-before relation [Lam78] between pairs of memory operations. Further-
more, when a memory operation occurs, it may need to be compared with other
memory operations that occurred arbitrarily “far” in the past (which means that
a hardware detector would have to somehow maintain information for evicted

cache blocks as well).

The drfx memory model builds on the work of Gharachorloo and Gibbons [GG91],
who recognized that it suffices to detect SC violations directly rather than data
races. They describe a simple conflict detection algorithm that ensures drfx’s
DRF and Soundness properties, but only with respect to the compiled version
of a program. Their detection is not sufficient to guarantee SC in terms of
the original program since it ignores the effects of possible compiler reorder-
ings [CDL09, GGI1|. drfx extends their approach with a notion of regions to

safely allow such compiler reorderings while still detecting all SC violations.

In concurrent work to our work on drfx, Lucia et al. [LCS10] also proposed a
hardware exception mechanism to simplify memory consistency models for pro-

gramming languages. Lucia et al. ensure a stronger property than SC, namely
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atomicity of synchronization-free regions, which are maximal regions of code de-
limited by synchronization operations. This property can be quite useful for
understanding and debugging concurrent programs. However, it introduces ad-
ditional complexity for conflict detection as they have to deal with unbounded
regions. Also, conflicts must be caught as soon as they occur to prevent non-SC
state being exposed to system calls. Finally, like drfx, they too have to avoid
false conflicts. Performing precise and eager conflict detection at byte granular-
ity for unbounded-size regions is arguably more complex than our lazy conflict
detection with bounded regions. The drfx implementation achieves efficiency in
spite of smaller bounded regions by distinguishing soft fences from hard fences

and allowing the hardware to optimize across soft fences.

The interference checks in the SC-preserving compiler are a form of dynamic
data-race detection that is sufficient to ensure that certain compiler transforma-
tions don’t violate SC. While the approaches above detect all races that could vio-
late end-to-end SC, interference checks only target SC violations that result from
compiler reorderings. However, they have the advantage of being fine-grained,
requiring data race detection only for variables that are involved in a compiler
optimization and only during the dynamic lifetime of that optimization’s effect.
Also, the detection is made possible with relatively minimal hardware support
based on speculation mechanisms that exist in real hardware [Yea02], rather than
requiring the complexity of TM-style conflict detection. Finally, this work shows
how to safely recover from interference for common compiler optimizations based
on eager loads. This allows the execution to continue while maintaining SC,

avoiding the need to throw an exception.
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6.2.3 Transactional Memory Systems

Hammond et al. [HWCO04] proposed a memory consistency model based on a
transactional programming model [HM93]. In their approach, the programmer
and compiler cooperate to ensure that each instruction is part of some trans-
action. The hardware then ensures that each transaction executes atomically,
which in turn guarantees SC. This approach is applicable for programs written
using explicit transactions, whereas drfx is useful for programs written using

locks and other traditional forms of synchronization.

The drfx hardware conflict detection algorithm is similar to the one proposed
by Hammond et al. [HWCO04] but is simplified in a few ways. First, transactions
require additional runtime support for versioning and rollback, which adds over-
head and is difficult across system events such as I/O. Second, because program-
mers define their own transactions, the system cannot bound their size, whereas
regions in drfx are constructed by the compiler and so are easily bounded. How-
ever, transactional memory systems can incur false conflicts at the expense of
extra overhead, while conflict detection in the drfx model must be precise, which

adds some extra complexity in the hardware.

6.3 Compiler Optimizations

6.3.1 Strengthening Memory Models by Restricting the Compiler

In recent work, Sevéik et al. describe a concurrency extension to a small C-like
programming language that provides end-to-end TSO semantics [SVZ11|. They
modify an existing compiler for the language and mechanically prove that the op-
timizations are T'SO-preserving, thereby providing an end-to-end guarantee when

the resulting binaries are executed on x86 hardware. Our performance measure-
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ments complement their work by indicating that a TSO-preserving compiler could

be practical to use in a full-fledged programming language.

6.3.2 Optimistic Optimization via Hardware Speculation

The SC-preserving compiler’s interference checks are inspired by a common hard-
ware mechanism for enabling out-of-order execution in the presence of strong
memory models [GGH91|. This mechanism [Yea02| allows a memory load to be
executed out-of-order speculatively, before earlier instructions have completed.
Once those instructions have completed, the load need not be re-executed if the
value has not changed in the meanwhile, and this can be conservatively detected
by checking if the associated cache line has been invalidated. This work demon-
strates how the technique can be adapted to the compiler by viewing common
compiler optimizations as performing eager (i.e., speculative) reads; a simple in-
terface through which the hardware can expose this mechanism to the compiler

is described.

Others have proposed hardware support for dynamically detecting memory
aliasing between local loads and stores in a single thread and expose that feature
to the compiler so that it can perform optimistic optimizations [GCM94, PGMO00].
The Itanium processor implemented this feature using an Advanced Load Ad-
dress Table (ALAT) to enable aggressive load optimizations [Ita02]. Recently,
Nagarajan and Gupta [NG09| extended Itanium’s ALAT mechanism to detect
memory aliasing with remote writes, enabling the compiler to speculatively re-
order memory operations across memory barriers. While interference checks use a
mechanism similar to these proposals, they solve a different problem: preserving

SC in the face of common compiler transformations.
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CHAPTER 7

Conclusion

Data races are a common flaw in shared memory, concurrent programs. They
often lead to insidious bugs that are difficult to isolate and fix. Even assum-
ing that programs exhibit sequentially consistent behavior, data races can lead
to confusing outcomes. Moreover, modern architectures and programming lan-
guages provide relaxed memory models, weaker than sequential consistency, that

further complicate reasoning about racy programs.

Detecting data races has been the subject of much research effort, and both
static and dynamic techniques exist for finding them. But static approaches
report many false positives and have limited applicability while precise dynamic
data race detection drastically slows programs making it impractical to apply
in many situations. The research in this dissertation aims to make data race
detection practical and helpful to programmers of shared memory, concurrent
programs. It demonstrates how efficient forms of imprecise dynamic data race

detection can be applied to find bugs and to simplify memory models.

LiteRace uses intelligent sampling to make data race detection for the purpose
of bug finding efficient. While it can fail to find some races exhibited during an
execution, it never reports a false positive, thus easing the burden on programmers
and testers. The sampler, based on the cold path hypothesis, manages to find
nearly 70% of the races exhibited in a program while analyzing only 2% of the

dynamic memory accesses. The average overhead of only 28% makes running
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LiteRace on many test executions feasible, thus allowing more data races to be

uncovered.

The drfx memory model uses a novel form of cooperation between the com-
piler and the hardware in order to provide strong, end-to-end guarantees to pro-
grammers. While current DRFO memory models provide weak or no semantics
to racy programs, drfx provides simple guarantees for executions of all pro-
grams: if an execution terminates in a memory model exception, the program
has a data race; if an execution terminates normally, it exhibits SC behavior.
drfx efficiently provides this guarantee by targeting data race detection only
at concurrently executing, bounded regions of code. By avoiding optimizations
across region boundaries in the compiler and the hardware, SC behavior is guar-
anteed if a race is not detected among regions that execute concurrently, even
if other data races in the program go undetected. The detection employed by
drfx hardware must never report a false race, otherwise data-race-free programs
could be terminated, violating the guarantee. Experimental results show that a
set of benchmarks built using a drfx-compliant compiler and run on simulated

drfx-compliant hardware incur an average slowdown of only 11% on average.

The SC-preserving compiler calls into question the importance of violating
sequential consistency for the sake of performance when optimizing programs in
a compiler. Modifying LLVM, a state-of-the-art C and C++ compiler, to be SC-
preserving results in only 3.8% overhead on average for a set of benchmarks run
on a Xeon multicore processor. Even when certain SC-violating optimizations
are needed for performance, in particular eager load optimizations, they can be
enabled in an SC-preserving manner by using fine-grained, compiler-directed, dy-
namic race detection. Recovery code inserted by the compiler allows the program

to recover SC behavior when a race is detected dynamically. As such, the detec-
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tion used in the SC-preserving compiler can conservatively report a race, unlike
the detection schemes for drfx and LiteRace. Furthermore, unlike in the other
schemes, the detection is limited to particular memory locations indicated by in-
terference check instructions inserted by the compiler. The hardware mechanism
necessary to implement the targeted race detection needed by the interference

checks is straightforward and similar to existing features in real processors.

To summarize, dynamic data race detection can be used to improve the state
of the art in shared memory concurrent programming without compromising
performance and with reasonable complexity. The key is to relax the require-
ment that the analysis precisely identify all data races in the execution being
monitored. Depending on the way in which this requirement is relaxed, we can
achieve race detection that addresses different challenges in the understanding
of shared memory systems. Furthermore, the relaxed techniques avoid the hefty
performance or complexity penalty normally associated with dynamic data race
detection. I presented three techniques supporting this view and hope the re-
search described in this dissertation eventually helps programmers to more easily

debug and understand their shared memory, concurrent code.
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