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Abstract

This thesis explores proofs by coupling from the perspective of formal verification. Long employed in probability
theory and theoretical computer science, these proofs construct couplings between the output distributions of two
probabilistic processes. Couplings can imply various probabilistic relational properties, guarantees that compare
two runs of a probabilistic computation.

To give a formal account of this clean proof technique, we first show that proofs in the program logic
PRHL (probabilistic Relational Hoare Logic) describe couplings. We formalize couplings that establish various
probabilistic properties, including distribution equivalence, convergence, and stochastic domination. Then we
deepen the connection between couplings and PRHL by giving a proofs-as-programs interpretation: a coupling
proof encodes a probabilistic product program, whose properties imply relational properties of the original two
programs. We design the logic ×PRHL (product PRHL) to build the product program, with extensions to model
more advanced constructions including shift coupling and path coupling.

We then develop an approximate version of probabilistic coupling, based on approximate liftings. It is known
that the existence of an approximate lifting implies differential privacy, a relational notion of statistical privacy. We
propose a corresponding proof technique—proof by approximate coupling—inspired by the logic APRHL, a version
of PRHL for building approximate liftings. Drawing on ideas from existing privacy proofs, we extend APRHL with
novel proof rules for constructing new approximate couplings. We give approximate coupling proofs of privacy
for the Report-noisy-max and Sparse Vector mechanisms, well-known algorithms from the privacy literature with
notoriously subtle privacy proofs, and produce the first formalized proof of privacy for these algorithms in APRHL.

Finally, we enrich the theory of approximate couplings with several more sophisticated constructions: a
principle for showing accuracy-dependent privacy, a generalization of the advanced composition theorem from
differential privacy, and an optimal approximate coupling relating two subsets of samples. We also show
equivalences between approximate couplings and other existing definitions. These ingredients support the first
formalized proof of privacy for the Between Thresholds mechanism, an extension of the Sparse Vector mechanism.
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Chapter 1

Introduction

Randomized algorithms have long stimulated the imagination of computer scientists. Endowed with the power to
draw random samples, these algorithms provide sophisticated guarantees far beyond the reach of deterministic
computations. However, their proofs of correctness are often highly intricate, employing specialized techniques to
reason about randomness.

This thesis investigates one such tool—probabilistic coupling—for proving probabilistic relational properties,
which compare executions of two randomized algorithms. Couplings are a familiar concept in probability theory
and theoretical computer science, where they support a proof technique called proof by coupling. We explore the
reasoning principle behind these proofs, identifying their theoretical underpinnings, clarifying their structure, and
enabling formal verification.

1.1 Challenges in probabilistic reasoning

While probabilistic programs aren’t much harder to express than their deterministic counterparts, they are
significantly more challenging to reason about. To see why, suppose we want to prove a property about the output
of an algorithm for all inputs. In a deterministic algorithm, each concrete input produces a single trace through
the program. Since different paths correspond to distinct inputs, we can freely group similar traces together
and reason about each group on its own. The code of the algorithm naturally guides the proof: at a branching
instruction, for instance, we may classify the executions according to the path they take and then consider each
behavior separately. In this way, we can reason about a complex program by focusing on simpler cases.

For randomized algorithms, this neat picture is considerably more complicated. A single execution now
comprises multiple traces, each with its own probability. Relations between trace probabilities make it difficult to
reason about paths separately. At a conditional statement, for instance, the execution has some probability of
taking the first branch and some probability of taking the second branch; in a sense, the computation takes both
branches. If we reason about these two cases in isolation, we must track the probabilities of each branch in order
to join the cases when the paths later merge. This is challenging even for small programs, as a path’s probability
can have complex dependencies on the input and on the probabilities of other possible traces. If we instead reason
about both behaviors together, we must provide a single analysis for executions that behave quite differently.

Broadly speaking, then, a central challenge of probabilistic reasoning is to organize the various execution
behaviors into manageable cases while cleanly tracking the relationship across different groups. To tackle this
problem, researchers in randomized algorithms have crafted a rich array of conceptual tools to construct their
proofs, simplifying arguments by cleverly abstracting away uninteresting technical details. Also known as proof
techniques, these instruments can be sophisticated and highly specialized—often tailored to a single property, as a
kind of logical scalpel—but the most useful ones strike a fine balance: specific enough to pare logical arguments
down to just their essential points, general enough to support proofs for a broad class of properties. A proof
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CHAPTER 1. INTRODUCTION 2

technique is a reusable component for analyzing algorithms, and is as much of an intellectual contribution as any
new proof or algorithm.

1.2 Couplings and relational properties

In this thesis we explore a proof technique for probabilistic relational properties, guarantees comparing the runs
of two randomized algorithms. Such properties are commonplace in computer science and probability theory.
Examples include:

• Probabilistic equivalence: two probabilistic programs produce equal distributions.

• Stochastic domination: one probabilistic program is more likely than another to produce large outputs.

• Convergence (also mixing): the output distributions of two probabilistic loops approach each other as the
loops execute more iterations.

• Indistinguishability (also differential privacy): the output distributions of two probabilistic programs
are close together. For instance, differential privacy requires that two similar inputs—say, the real private
database and a hypothetical version with one individual’s data omitted—yield similar output distributions.

• Truthfulness (also Nash equilibrium): an agent’s average utility is larger when reporting an honest value
instead of deviating to a misleading value.

At first glance, relational properties appear to be even harder to establish than standard, non-relational properties—
instead of analyzing a single probabilistic computation, we now need to deal with two. (Indeed, any property of a
single program can be viewed as a relational property between the target program and the trivial, do-nothing
program.) However, relational properties often relate two highly similar programs, even comparing the same
program on two possible inputs. In these cases, we can leverage a powerful abstraction and an associated proof
technique from probability theory—probabilistic coupling and proof by coupling.

The fundamental observation is that probabilistic relational properties compare computations in two different
worlds, assuming no particular correlation between random samples. Accordingly, we may freely assume any
correlation we like for the purposes of the proof—a relational property holds (or doesn’t hold) regardless of which
one we pick. For instance, if two programs generate identical output distributions, this holds whether they share
coin flips or take independent samples; relational properties don’t require that the two programs use separate
randomness. By carefully arranging the correlation, we can reason about two executions as if they were linked in
some convenient way.

To take advantage of this freedom, we need some way to design specific correlations between program
executions. In principle, this can be a highly challenging task. The two runs may take samples from different
distributions, and it is unclear exactly how they can or should share randomness. When the two programs have
similar shapes, however, we can link two computations in a step-by-step fashion. First, correlations between
intermediate samples can be described by probabilistic couplings, joint distributions over pairs. For example, a
valid coupling of two fair coin flips could specify that the draws take opposite values; the correlated distribution
would produce “(heads, tails)” and “(tails, heads)” with equal probability. A coupling formalizes what it means to
share randomness: a single source of randomness simulates draws from two distributions. Since randomness can
be shared in different ways, two distributions typically support a variety of distinct couplings.

A proof by coupling, then, describes two correlated executions by piecing together couplings for corresponding
pairs of sampling instructions. In the course of a proof, we can imagine stepping through the two programs in
parallel, selecting couplings along the way. For instance, if we apply the opposite coupling to link a coin flip in one
program with a coin flip in the other, we may assume the samples remain opposite when analyzing the rest of
the programs. By flowing these relations forward from two initial inputs, a proof by coupling can focus on just
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pairs of similar executions as it builds up to a coupling between two output distributions. This is the main product
of the proof: features of the final coupling imply properties about the output distributions, and hence relational
properties about the original programs.

Working in tandem, couplings and proofs by couplings can simplify probabilistic reasoning in several ways.

• Reduce to one source of randomness. By analyzing two runs as if they shared a single source of randomness,
we can reason about two programs as if they were one.

• Abstract away probabilities. Proofs by coupling isolate probabilistic reasoning from the non-probabilistic
parts of the proof, which are more straightforward. We only need to think about probabilistic aspects when
we select couplings at the sampling instructions; throughout the rest of the programs, we can reason purely
in terms of deterministic relations between the two runs.

• Enable compositional, structured reasoning. By focusing on each step of an algorithm individually and
then smoothly combining the results, the coupling proof technique enables a highly modular style of
reasoning guided by the code of the program.

Proofs by coupling are also surprisingly flexible; many probabilistic relational properties, including the examples
listed above, can be proved in this way. Individual couplings can also be combined in various subtle ways, giving
rise to a rich diversity of coupling proofs.

1.3 A formal study of proofs by coupling

While couplings proofs originate from probability theory as a tool for human reasoning, formal verification will be
the setting for our investigation. Our perspective affords two distinct advantages.

• The theory of formal verification provides a wealth of concepts to precisely describe and analyze proof
systems. By studying coupling proofs in these terms, we can give a fresh understanding of this classical
proof technique. As a consequence, we can extend proofs by coupling to target new guarantees, unifying
seemingly unrelated properties and simplifying their proofs.

• Formal verification systems provide a natural domain to apply our insights. First, couplings enable clean
proofs for properties that are traditionally challenging for computers to verify. Existing techniques can also
be considered in a new light, clarifying why certain features are useful and revealing possible enhancements.

The technical chapters of this thesis fall into two parts. Chapters 2 and 3 concern probabilistic couplings, while
Chapters 4 and 5 investigate approximate couplings. General themes and intuitions developed in the first half
influence the second half, but the two parts are largely self-contained and can be read independently.

Chapter 2 begins our study of probabilistic couplings in formal verification. We observe that the program logic
PRHL (probabilistic Relational Hoare Logic), originally proposed by Barthe, Grégoire, and Zanella-Béguelin (2009)
for verifying proofs of cryptographic security, is in fact a logic for formally constructing probabilistic couplings.
Using this connection, we formalize classical coupling proofs establishing equivalence, convergence, and stochastic
domination of probabilistic processes.

Chapter 3 deepens our correspondence between couplings and PRHL. First, coupling proofs describe how to
meld two probabilistic programs into a single program; in formal verification, such a construction is known as a
product program. Accordingly, we show that PRHL proofs encode a novel kind of product program called the coupled
product, reflecting the structure of a coupling proof. This idea recalls a central theme in logic and computer science:
formal proofs can be interpreted as computations, a so-called proofs-as-programs or Curry-Howard correspondence.
Concretely, we extend PRHL to a logic ×PRHL (product PRHL) that constructs the product program alongside the
coupling proof. Then, we design a new loop rule inspired by shift coupling, a way to build couplings asynchronously.
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As applications, we formalize rapid mixing for several Markov chains. Our approach can also capture a simplified
version of the path coupling technique introduced by Bubley and Dyer (1997).

Chapter 4 turns our focus to a generalization of couplings: approximate couplings. These couplings are closely
related to differential privacy, a quantitative, relational property modeling statistical privacy. We begin with
a candidate definition of approximate coupling, refining several existing notions. We then reverse-engineer a
corresponding proof technique called proof by approximate coupling from the program logic APRHL, an approximate
version of PRHL proposed by Barthe, Köpf, Olmedo, and Zanella-Béguelin (2013c). Taking inspiration from this
proof technique, we show how two new approximate couplings of the Laplace distribution and a construction
called pointwise equality enable an approximate coupling proof of privacy for the Report-noisy-max and Sparse
Vector mechanisms. Our proofs are simpler than existing proofs—which were notoriously difficult to get right
(Lyu, Su, and Li, 2017)—and extend to natural variants of the algorithms. We realize our proof in an extension of
APRHL, arriving at the first formalized privacy proofs for these mechanisms.

Chapter 5 presents a handful of advanced constructions for approximate couplings: (i) a principle for proving
accuracy-dependent privacy; (ii) a construction for linking two subsets of samples; and (iii) a composition principle
generalizing the advanced composition theorem from differential privacy. We also clarify the landscape of existing
definitions by proving equivalences between approximate couplings and prior notions of approximate equivalence.
Combining these ingredients, we give a proof by approximate coupling establishing differential privacy for the
Between Thresholds mechanism by Bun, Steinke, and Ullman (2017). After extending APRHL with several rules
corresponding to our constructions, we achieve the first formalized privacy proof for this algorithm.

Chapter 6 surveys concurrent work on couplings and formal verification, outlining promising directions for
further developing the theory and application of proofs by coupling.

A note about mechanical verification. The gold standard in formal verification is mechanized proof, where every
step has been fully computer-checked. The logics we will develop are highly suitable for computer verification,
due to their highly structured proofs, but we do not mechanically verify coupling proofs as part of this thesis.
Instead, we will describe formalized proofs in the logic on paper. Prototype implementations in the EASYCRYPT

framework (Barthe, Dupressoir, Grégoire, Kunz, Schmidt, and Strub, 2013b) can machine-check versions of the
coupling proofs we will see (see, e.g., Barthe et al. (2013c) and Buch (2017)), but the current implementations
are not precisely aligned with our logics.

Acknowledgments. The technical content of this thesis draws on a fruitful collaboration with Gilles Barthe,
Thomas Espitau, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Tetsuya Sato, Léo Stefanesco and Pierre-Yves
Strub. Chapter 2 is based on Barthe, Espitau, Grégoire, Hsu, Stefanesco, and Strub (2015a), Chapter 3 includes
material from Barthe, Grégoire, Hsu, and Strub (2017d), Chapter 4 distills results first appearing in Barthe,
Gaboardi, Grégoire, Hsu, and Strub (2016c), and Chapter 5 presents material from Barthe, Fong, Gaboardi,
Grégoire, Hsu, and Strub (2016a) and Barthe, Espitau, Hsu, Sato, and Strub (2017c). The author contributed the
bulk of the work towards the results in this thesis.



Chapter 2

Couplings à la formal verification

To begin our formal investigation of coupling proofs, we first provide the necessary mathematical background
(Section 2.1), and then draw a deep connection between coupling proofs and the program logic PRHL (Section 2.2);
this observation is the principal conceptual contribution of this chapter and forms the foundation for the entire
thesis. We show how to formalize several examples of couplings (Section 2.3), and discuss related work on
relational program logics and probabilistic liftings (Section 2.4).

2.1 Mathematical preliminaries

A discrete probability distribution associates each element of a set with a number in [0,1], representing its
probability. In order to model programs that may not terminate, we work with a slightly more general notion
called a sub-distribution.

Definition 2.1.1. A (discrete) sub-distribution over a countable set A is a map µ : A→ [0, 1] taking each element
of A to a numeric weight such that the weights sum to at most 1:

∑

a∈A
µ(a)≤ 1.

We write SDistr(A) for the set of all sub-distributions over A. When the weights sum to 1, we call µ a proper
distribution; we write Distr(A) for the set of all proper distributions over A. The empty or null sub-distribution ⊥
assigns weight 0 to all elements.

We work with discrete sub-distributions throughout. While this is certainly a restriction—excluding, for
instance, standard distributions over the real numbers—many interesting coupling proofs can already be expressed
in our setting. Where necessary, we will use discrete versions of standard, continuous distributions. Our results
should mostly carry over to the continuous setting, as couplings are frequently used on continuous distributions in
probability theory, but the general case introduces measure-theoretic technicalities (e.g., working with integrals
rather than sums, checking sets are measurable, etc.) that would distract from our primary focus. We discuss this
issue further in Chapter 6.

We need several concepts and notations related to discrete distributions. First, the probability of a set S ⊆A:

µ(S)¬
∑

a∈S
µ(a).

The support of a sub-distribution is the set of elements with positive probability:

supp(µ)¬ {a ∈A | µ(a)> 0}.

5
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The weight of a sub-distribution is the total probability of all elements:

|µ|¬
∑

a∈A
µ(a).

Sub-distributions can be ordered pointwise: µ1 ≤ µ2 if µ1(a) ≤ µ2(a) for every element a ∈ A. Finally, given a
function f : A→ B where B is numeric (like the integers or the reals), its expected value over a sub-distribution µ is

E
µ
[ f ]¬ E

a∼µ
[ f (a)]¬

∑

a∈A
f (a) ·µ(a).

Under light assumptions, the expected value is guaranteed to exist (for instance, when f is a bounded function).
To transform sub-distributions, we can lift a function f : A→ B on sets to a map f ] : SDistr(A)→ SDistr(B)

via f ](µ)(b) ¬ µ( f −1(b)). For example, let p1 : A1 ×A2 → A1 and p2 : A1 ×A2 → A2 be the first and second
projections from a pair. The corresponding probabilistic projections π1 : SDistr(A1 × A2) → SDistr(A1) and
π2 : SDistr(A1 ×A2)→ SDistr(A2) are defined by

π1(µ)(a1)¬ p]1(µ)(a1) =
∑

a2∈A2

µ(a1, a2)

π2(µ)(a2)¬ p]2(µ)(a2) =
∑

a1∈A1

µ(a1, a2).

We call a sub-distribution µ over pairs a joint sub-distribution, and the projected sub-distributions π1(µ) and π2(µ)
the first and second marginals, respectively.

Probabilistic couplings and liftings

A probabilistic coupling models two distributions with a single joint distribution.

Definition 2.1.2. Given µ1,µ2 sub-distributions over A1 and A2, a sub-distribution µ over pairs A1 ×A2 is a
coupling for (µ1,µ2) if π1(µ) = µ1 and π2(µ) = µ2.

Generally, couplings are not unique—different witnesses represent different ways to share randomness between
two distributions. To give a few examples, we first introduce some standard distributions.

Definition 2.1.3. Let A be a finite, non-empty set. The uniform distribution over A, written Unif(A), assigns
probability 1/|A| to each element. We write Flip for the uniform distribution over booleans, the distribution of a
fair coin flip.

Example 2.1.4 (Couplings from bijections). We can give two distinct couplings of (Flip,Flip):

Identity coupling:

µid(a1, a2)¬

¨

1/2 : a1 = a2

0 : otherwise.

Negation coupling:

µ¬(a1, a2)¬

¨

1/2 : ¬a1 = a2

0 : otherwise.

More generally, any bijection f : A→A yields a coupling of (Unif(A),Unif(A)):

µ f (a1, a2)¬

¨

1/|A| : f (a1) = a2

0 : otherwise.
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This coupling matches samples: each sample a from the first distribution is paired with a corresponding
sample f (a) from the second distribution. To take two correlated samples from this coupling, we can imagine first
sampling from the first distribution, and then applying f to produce a sample for the second distribution. When
f is a bijection, this gives a valid coupling for two uniform distributions: viewed separately, both the first and
second correlated samples are distributed uniformly.

For more general distributions, if a1 and a2 have different probabilities under µ1 and µ2 then the correlated
distribution cannot return (a1,−) and (−, a2) with equal probabilities; for instance, a bijection with f (a1) = a2
would not give a valid coupling. However, general distributions can be coupled in other ways.

Example 2.1.5. Let µ be a sub-distribution over A. The identity coupling of (µ,µ) is

µid(a1, a2)¬

¨

µ(a) : a1 = a2 = a
0 : otherwise.

Sampling from this coupling yields a pair of equal values.

Example 2.1.6. Let µ1,µ2 be sub-distributions over A1 and A2. The independent or trivial coupling is

µ×(a1, a2)¬ µ1(a1) ·µ2(a2).

This coupling models µ1 and µ2 as independent distributions: sampling from this coupling is equivalent to first
sampling from µ1 and then pairing with a fresh draw from µ2. The coupled distributions must be proper in order
to ensure the marginal conditions.

Since any two proper distributions can be coupled by the trivial coupling, the mere existence of a coupling
yields little information. Couplings are more useful when the joint distribution satisfies additional conditions, for
instance when all elements in the support satisfy some property.

Definition 2.1.7 (Lifting). Let µ1,µ2 be sub-distributions over A1 and A2, and let R ⊆A1 ×A2 be a relation. A
sub-distribution µ over pairs A1 ×A2 is a witness for the R-lifting of (µ1,µ2) if:

1. µ is a coupling for (µ1,µ2), and

2. supp(µ) ⊆R.

If there exists µ satisfying these two conditions, we say µ1 and µ2 are related by the lifting of R and write

µ1 R] µ2.

We typically express R using set notation, i.e.,

R= {(a1, a2) ∈A1 ×A2 | Φ(a1, a2)}

where Φ is a logical formula. When Φ is a standard mathematical relation (e.g., equality), we leave A1 and A2
implicit and just write Φ, sometimes enclosed by parentheses (Φ) for clarity.

Example 2.1.8. Many of the couplings we saw before are more precisely described as liftings.

Bijection coupling. For a bijection f : A→A, the coupling in Example 2.1.4 witnesses the lifting

Unif(A) {(a1, a2) | f (a1) = a2}] Unif(A).

Identity coupling. The coupling in Example 2.1.5 witnesses the lifting

µ (=)] µ.
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Trivial coupling. The coupling in Example 2.1.6 witnesses the lifting

µ1 >] µ2.

(>¬A1 ×A2 is the trivial relation relating all pairs of elements.)

Liftings were originally introduced in research on probabilistic bisimulation, a technique for verifying equivalence
of two probabilistic transition systems. By viewing liftings as a particular kind of coupling, we can repurpose
verification tools to prove new properties by constructing couplings, while leveraging ideas from the coupling
literature to enrich existing systems. Before we get to that, let’s see how the existence of a coupling can imply
useful probabilistic properties.

Useful consequences of couplings and liftings

If there exists a coupling µ between (µ1,µ2) satisfying certain properties, we can deduce probabilistic properties
about µ1 and µ2. First of all, two coupled distributions have equal weight.

Proposition 2.1.9 (Equality of weight). Suppose µ1 and µ2 are sub-distributions over A such that there exists a
coupling µ of µ1 and µ2. Then |µ1|= |µ2|.

This follows because µ1 and µ2 are both projections of µ, and projections preserve weight. Couplings can also
show that two distributions are equal.

Proposition 2.1.10 (Equality of distributions). Suppose µ1 and µ2 are sub-distributions over A. Then µ1 = µ2 if
and only if there is a lifting µ1 (=)] µ2.

Proof. For the forward direction, define µ(a, a) ¬ µ1(a) = µ2(a) and µ(a1, a2) ¬ 0 otherwise. Evidently, µ has
support in the equality relation (=) and also has the desired marginals: π1(µ) = µ1 and π2(µ) = µ2. Thus µ is a
witness to the desired lifting.

For the reverse direction, let the witness be µ. By the support condition, π1(µ)(a) = π2(µ)(a) for every a ∈A.
Since the left and right sides are equal to µ1(a) and µ2(a) respectively by the marginal conditions, µ1(a) = µ2(a)
for every a. So, µ1 and µ2 are equal.

In some cases we can show results in the converse direction: if a property of two distributions holds, then
there exists a particular lifting. To give some examples, we first introduce a powerful equivalence due to Strassen
(1965).

Theorem 2.1.11. Let µ1,µ2 be sub-distributions over A1 and A2, and let R be a binary relation over A1 and A2.
Then the lifting µ1 R] µ2 implies µ1(S1)≤ µ2(R(S1)) for every subset S1 ⊆A1, where R(S1) ⊆A2 is the image of S1
under R:

R(S1)¬ {a2 ∈A2 | ∃a1 ∈A1, (a1, a2) ∈R}.

(For instance, if A1 =A2 = N and R is the relation ≤, then R(S) is the set of all natural numbers larger than minS.)
The converse holds if µ1 and µ2 have equal weight.

Strassen proved Theorem 2.1.11 for continuous (proper) distributions using deep results from probability
theory. In our discrete setting, there is an elementary proof by the maximum flow-minimum cut theorem; the
proof also establishes a mild generalization to sub-distributions. So as not to interrupt the flow here, we defer
details of the proof to Chapter 5. For now, we use this theorem to illustrate a few more useful consequences of
liftings. For starters, couplings can bound the probability of an event in the first distribution by the probability of
an event in the second distribution.
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Proposition 2.1.12. Suppose µ1,µ2 are sub-distributions over A1 and A2 respectively, and consider two subsets
S1 ⊆A1 and S2 ⊆A2. The lifting

µ1 {(a1, a2) | a1 ∈ S1→ a2 ∈ S2}] µ2

implies µ1(S1)≤ µ2(S2). The converse holds when µ1 and µ2 have equal weight.

Proof. Let R be the relation {(a1, a2) | a1 ∈ S1→ a2 ∈ S2}. The forward direction is immediate by Theorem 2.1.11,
taking the subset S1. For the reverse direction, consider any non-empty subset T1 ⊆A1. If T1 is not contained in
S1, then R(T1) =A2 and µ1(T1)≤ µ2(R(T1)) since µ1 and µ2 have equal weight. Otherwise R(T1) = S2, so

µ1(T1)≤ µ1(S1)≤ µ2(S2) = µ2(R(T1)).

Theorem 2.1.11 gives the desired lifting:

µ1 {(a1, a2) | a1 ∈ S1→ a2 ∈ S2}] µ2.

A slightly more subtle consequence is stochastic domination, an order on distributions over an ordered set.

Definition 2.1.13. Let (A,≤A) be an ordered set and suppose µ1,µ2 are sub-distributions over A. We say µ2
stochastically dominates µ1, denoted µ1 ≤sd µ2, if

µ1({a ∈A | k ≤A a})≤ µ2({a ∈A | k ≤A a})

for every k ∈A.

This order is different from the pointwise order on sub-distributions since it uses the order on the underlying
space. For instance, two proper distributions satisfy µ1 ≤ µ2 exactly when µ1 = µ2, but two unequal distributions
may satisfy µ1 ≤sd µ2; e.g., if we take distributions over the natural numbers N with the usual order and µ1 places
weight 1 on 0 while µ2 places weight 1 on 1.

Stochastic domination is precisely the probabilistic lifting of the order relation.

Proposition 2.1.14. Suppose µ1,µ2 are sub-distributions over a set A with a reflexive order ≤A (i.e., a ≤A a). Then
µ1 (≤A)] µ2 implies µ1 ≤sd µ2. The converse also holds when µ1 and µ2 have equal weight, as long as any upwards
closed subset of A either contains a minimum element or is the whole set A (e.g., A= N or Z with the usual order).

Proof. Let R¬ (≤A). For the forward direction, Theorem 2.1.11 gives

µ1({a ∈A | k ≤A a})≤ µ2(R({a ∈A | k ≤A a})).

The subset on the right is precisely the set of a′ ∈ A such that a′ ≥A a for some a ≥A k; by transitivity and
reflexivity, we have

µ2(R({a ∈A | k ≤A a})) = µ2({a ∈A | k ≤A a}).

This holds for all k ∈A, establishing µ1 ≤sd µ2.
For the converse, suppose µ1 ≤sd µ2 and µ1 and µ2 have equal weights, and let S ⊆ A be any subset. If the

upwards closure R(S) is the whole set A, then µ1(S)≤ µ2(R(S)) since µ1 and µ2 have equal weights. Otherwise,
there is a least element k of R(S) by assumption, and we have

µ1(S)≤ µ1(R(S)) = µ1({a ∈A | k ≤A a})≤ µ2({a ∈A | k ≤A a}) = µ2(R(S)),

where the middle inequality is by stochastic domination. Theorem 2.1.11 implies µ1 (≤A)] µ2.

Finally, a typical application of coupling proofs is showing that two distributions are close together.
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Definition 2.1.15. Let µ1,µ2 be sub-distributions over A. The total variation distance (also known as TV-distance
or statistical distance) between µ1 and µ2 is defined as

dtv (µ1,µ2)¬
1
2

∑

a∈A
|µ1(a)−µ2(a)|=max

S⊆A
|µ1(S)−µ2(S)|.

In particular, the total variation distance bounds the difference in probabilities of any event.

Couplings are closely related to TV-distance.

Theorem 2.1.16 (see, e.g., Levin, Peres, and Wilmer (2009); Lindvall (2002)). Let µ1 and µ2 be sub-distributions
over A and let µ be a coupling. Then

dtv (µ1,µ2)≤ Pr
(a1,a2)∼µ

[a1 6= a2].

In particular, if µ witnesses the lifting

µ1 {(a1, a2) ∈A×A | (a1, a2) ∈ S → a1 = a2}] µ2,

then the TV-distance is bounded by the probability

dtv (µ1,µ2)≤ Pr
(a1,a2)∼µ

[(a1, a2) /∈ S].

Theorem 2.1.16 is the fundamental result behind the so-called coupling method (Aldous, 1983), a technique
to show two probabilistic processes converge by constructing a coupling that causes the processes to become
equal with high probability.1 This theorem is usually stated for proper distributions µ1 and µ2; the result on
sub-distributions follows as an easy consequence. (If there is a lifting then µ1 and µ2 have equal weights w by
Proposition 2.1.9, and the inequalities in Theorem 2.1.16 are preserved when µ1 and µ2 are scaled by the same
constant. When w= 0 the inequality is immediate; otherwise, by scaling up both distributions by 1/w, applying
the standard theorem to obtain the total variation bound for proper distributions, then scaling back down by w,
we recover the total variation bound for sub-distributions.) Unlike the previous facts, the target property about
µ1 and µ2 does not directly follow from the existence of a lifting—we need more detailed information about the
coupling µ.

Proof by coupling

The previous results suggest an indirect approach to proving properties of two distributions: demonstrate there
exists a coupling of a particular form. However, how are we supposed to find a witness distribution with the
desired properties? The given distributions may be highly complex, possibly over infinite sets—it is not clear how
to represent, much less construct, the desired coupling.

To address this challenge, probability theorists have developed a powerful proof technique called proof by
coupling. This technique assumes a bit more information about the distributions: we need concrete descriptions of
two processes producing the distributions. Usually, these generating programs are readily available; indeed, they
are often the most natural descriptions of complex distributions.

Given two programs, a proof by coupling builds a coupling for the output distributions by coupling intermediate
samples. In a bit more detail, we imagine stepping through the programs in parallel, one instruction at a time,
starting from two inputs. Whenever we reach two corresponding sampling instructions, we pick a valid coupling
for the sampled distributions. The selected couplings induce a relation on samples, which we can assume when
analyzing the rest of the programs. For instance, by selecting couplings for earlier samples carefully, we may

1The converse of Theorem 2.1.16 also holds: there exists a coupling µmax , known as the maximal or optimal coupling, that achieves
equality (see, e.g., Levin et al. (2009); Lindvall (2002)). However, this result will not be important for our purposes.
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be able to assume the coupled programs take the same path at a subsequent branching statement; in this way,
coupling proofs can consider just pairs of well-behaved executions.

Finding appropriate couplings is the main intellectual challenge when carrying out a proof by coupling, the
steps requiring ingenuity. We close this section with an example of the proof technique in action.

Example 2.1.17. Consider a probabilistic process that tosses a fair coin T times and returns the number of heads.
If µ1, µ2 are the output distributions from running this process for T = T1, T2 iterations respectively and T1 ≤ T2,
then µ1 ≤sd µ2.

Proof by coupling. For the first T1 iterations, couple the coin flips to be equal—this ensures that after the first T1
iterations, the coupled counts are equal. The remaining T2 − T1 coin flips in the second run can only increase the
second count, while preserving the first count. Therefore under the coupling, the first count is no more than the
second count at termination, establishing µ1 ≤sd µ2.

For readers unfamiliar with these proofs, this argument may appear bewildering. The coupling is constructed
implicitly, and some of the steps are mysterious. To clarify such proofs, a natural idea is to design a formal logic
describing coupling proofs. Somewhat surprisingly, the logic we are looking for was already proposed in the formal
verification literature, originally for verifying security of cryptographic protocols.

2.2 A formal logic for coupling proofs

We will work with the logic PRHL (probabilistic Relational Hoare Logic) proposed by Barthe et al. (2009). Before
detailing its connection to coupling proofs, we provide a brief introduction to program logics.

Program logics: A brief primer

A logic consists of a collection of formulas, also known as judgments, and an interpretation describing what it
means—in typical, standard mathematics—for judgments to be true (valid). While it is possible to prove judgments
valid directly by using regular mathematical arguments, this is often inconvenient as the interpretation may be
quite complicated. Instead, many logics provide a proof system, a set of logical rules describing how to combine
known judgments (the premises) to prove a new judgment (the conclusion). Each rule represents a single step
in a formal proof. Starting from judgments given by rules with no premises (axioms), we can successively apply
rules to prove new judgments, building a tree-shaped derivation culminating in a single judgment. To ensure that
this final judgment is valid, each logical rule should be sound: if the premises are valid, then so is the conclusion.
Soundness is a basic property, typically one of the first results to be proved about a logic.

Program logics were first introduced by Hoare (1969), building on earlier ideas by Floyd (1967); they are also
called Floyd-Hoare logics. These logics are really two logics in one: the assertion logic, where formulas describe
program states, and the program logic proper, where judgments describe imperative programs. A judgment in the
main program logic consists of three parts: a program c and two assertions Φ and Ψ from the assertion logic. The
pre-condition Φ describes the initial conditions before executing c (for instance, assumptions about the input), while
the post-condition Ψ describes the final conditions after executing c (for instance, properties of the output). Hoare
(1969) proposed the original logical rules, which construct a judgment for a program by combining judgments for
its sub-programs. This compositional style of reasoning is a hallmark of program logics.

By varying the interpretation of judgments, the assertion logic, and the logical rules, Floyd-Hoare logics can
establish a variety of properties about different kinds of imperative programs. Notable extensions reason about
non-determinism (Dijkstra, 1976), pointers and memory allocation (O’Hearn, Reynolds, and Yang, 2001; Reynolds,
2001, 2002), concurrency (O’Hearn, 2007), and more. (Readers should consult a survey for a more comprehensive
account of Floyd-Hoare logic (Apt, 1981, 1983; Jones, 2003).)

In this tradition, Barthe et al. (2009) introduced the logic PRHL targeting security properties in cryptography.
Compared to standard program logics, there are two twists: each judgment describes two programs, and programs
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can use random sampling. In short, PRHL is a probabilistic Relational Hoare Logic. Judgments encode probabilistic
relational properties of two programs, where a post-condition describes a probabilistic liftings between two output
distributions. More importantly, the proof rules represent different ways to combine liftings, formalizing various
steps in coupling proofs. Accordingly, we will interpret PRHL as a formal logic for proofs by coupling.

To build up to this connection, we first provide a brief overview of a core version of PRHL, reviewing the
programming language, the judgments and their interpretation, and the logical rules.

The logic PRHL: the programming language

Programs in PRHL are defined in terms of expressions E including constants, like the integers and booleans, as well
as combinations of constants and variables with primitive operations, like addition and subtraction. We suppose E
also includes terms for basic datatypes, like tuples and lists. Concretely, E is inductively defined by the following
grammar:

E := X | L (variables)

| Z | E + E | E − E | E · E (numbers)

| B | E ∧ E | E ∨ E | ¬E | E = E | E < E (booleans)

| (E , . . . ,E) | πi(E) | [] | E :: E | O(E) (tuples, lists, operations)

Expressions can mention two classes of variables: a countable set X of program variables, which can be modified
by the program, and a set L of logical variables, which model fixed parameters. Expressions are typed as numbers,
booleans, tuples, or lists, and primitive operations O have typed signatures; we consider only well-typed expressions
throughout. The expressions (E , . . . ,E) and πi(E) construct and project from a tuple, respectively; [] is the empty
list, and E :: E adds an element to the head of a list. We typically use the letter e for expressions, x , y, z, . . .
for program variables, and lower-case Greek letters (α,β , . . . ) and capital Roman letters (N , M , . . . ) for logical
variables.

We write V for the countable set of values, including integers, booleans, tuples, finite lists, etc. We can interpret
expressions given maps from variables and logical variables to values.

Definition 2.2.1. Program states are memories, maps X → V; we usually write m for a memory and State for the
set of memories. Logical contexts are maps L→ V; we usually write ρ for a logical context.

We interpret an expression e as a function ¹eºρ : State→ V in the usual way, for instance:

¹e1 + e2ºρm¬ ¹e1ºρm+ ¹e2ºρm.

Likewise, we interpret primitive operations o as functions ¹oºρ : V → V, so that

¹o(e)ºρm¬ ¹oºρ(¹eºρm).

We fix a set DE of distribution expressions to model primitive distributions that our programs can sample from. For
simplicity, we suppose for now that each distribution expression d is interpreted as a uniform distribution over a
finite set. So, we have the coin flip and uniform distributions:

DE := Flip | Unif(E)

where E is a list, representing the space of samples. We will introduce other primitive distributions as needed. To
interpret distribution expressions, we define ¹dºρ : State→ Distr(V); for instance,

¹Unif(e)ºρm¬ U(¹eºρm)
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where U(S) is the mathematical uniform distribution over a set S.
Now let’s see the programming language. We work with a standard imperative language with random sampling.

The programs, also called commands or statements, are defined inductively:

C := skip (no-op)

| X ← E (assignment)

| X $← DE (sampling)

| C; C (sequencing)

| if E then C else C (conditional)

| while E do C (loop)

We assume throughout that programs are well-typed; for instance, the guard expressions in conditionals and loops
must be boolean.

We interpret each command as a mathematical function from states to sub-distributions over output states;
this function is known as the semantics of a command. Since the set of program variables and the set of values are
countable, the set of states is also countable so sub-distributions over states are discrete. To interpret commands,
we use two basic constructions on sub-distributions.

Definition 2.2.2. The function unit : A→ SDistr(A)maps every element a ∈A to the sub-distribution that places
probability 1 on a. The function bind : SDistr(A)× (A→ SDistr(B))→ SDistr(B) is defined by

bind(µ, f )(b)¬
∑

a∈A
µ(a) · f (a)(b).

Intuitively, bind applies a randomized function on a distribution over inputs.

We use a discrete version of the semantics considered by Kozen (1981), presented in Fig. 2.1; we write
m[x 7→ v] for the memory m with variable x updated to hold v, and a 7→ b(a) for the function mapping a to b(a).
The most complicated case is for loops. The sub-distribution µ(i)(m) models executions that exit after entering
the loop body at most i times, starting from initial memory m. For the base case i = 0, the sub-distribution
either returns m with probability 1 when the guard is false and the loop exits immediately, or returns the null
sub-distribution ⊥ when the guard is true. The cases i > 0 are defined recursively, by unrolling the loop.

Note that µ(i) are increasing in i: µ(i)(m)≤ µ( j)(m) for all m ∈ State and i ≤ j. In particular, the weights of the
sub-distributions are increasing. Since the weights are at most 1, the approximants converge to a sub-distribution
as i tends to infinity by the monotone convergence theorem (see, e.g., Rudin (1976, Theorem 11.28), taking the
discrete (counting) measure over State).

The logic PRHL: judgments and validity

The program logic PRHL features judgments of the following form:

c1 ∼ c2 : Φ=⇒ Ψ

Here, c1 and c2 are commands and Φ and Ψ are predicates on pairs of memories. To describe the inputs and
outputs of c1 and c2, each predicate can mention two copies x〈1〉, x〈2〉 of each program variable x; these tagged
variables refer to the value of x in the executions of c1 and c2 respectively.

Definition 2.2.3. Let X 〈1〉 and X 〈2〉 be the sets of tagged variables, finite sets of variable names tagged with 〈1〉
or 〈2〉 respectively:

X 〈1〉¬ {x〈1〉 | x ∈ X } and X 〈2〉¬ {x〈2〉 | x ∈ X }.
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¹skipºρm¬ unit(m)
¹x ← eºρm¬ unit(m[x 7→ ¹eºρm])
¹x $← dºρm¬ bind(¹dºρm, v 7→ unit(m[x 7→ v]))
¹c; c′ºρm¬ bind(¹cºρm,¹c′ºρ)

¹if e then c else c′ºρm¬

¨

¹cºρm : ¹eºρm= true

¹c′ºρm : ¹eºρm= false

¹while e do cºρm¬ lim
i→∞

µ(i)(m)

µ(i)(m)¬







⊥ : i = 0∧ ¹eºρm= true

unit(m) : i = 0∧ ¹eºρm= false

bind(¹if e then cºρm,µ(i−1)) : i > 0

Figure 2.1: Semantics of programs

Let State〈1〉 and State〈2〉 be the sets of tagged memories, maps from tagged variables to values:

State〈1〉¬ X 〈1〉 → V and State〈2〉¬ X 〈2〉 → V.

Let State× be the set of product memories, which combine two tagged memories:

State× ¬ X 〈1〉 ]X 〈2〉 → V.

For notational convenience we identify State× with pairs of memories State〈1〉 × State〈2〉; for m1 ∈ State〈1〉 and
m2 ∈ State〈2〉, we write (m1, m2) for the product memory and we use the usual projections on pairs to extract
untagged memories from the product memory:

p1(m1, m2)¬ |m1| and p2(m1, m2)¬ |m2|,

where the memory |m| ∈ State has all variables in X . For commands c and expressions e with variables in X , we
write c〈1〉, c〈2〉 and e〈1〉, e〈2〉 for the corresponding tagged commands and tagged expressions with variables in
X 〈1〉 and X 〈2〉.

We consider a set P of predicates (assertions) from first-order logic defined by the following grammar:

P := E〈1/2〉= E〈1/2〉 | E〈1/2〉< E〈1/2〉 | E〈1/2〉 ∈ E〈1/2〉
| > | ⊥ | O(E〈1/2〉, . . . ,E〈1/2〉) (predicates)

| P ∧P | P ∨P | ¬P | P → P | ∀L ∈ Z, P | ∃L ∈ Z, P (first-order formulas)

We typically use capital Greek letters (Φ,Ψ,Θ,Ξ, . . . ) for predicates. E〈1/2〉 denotes an expression where program
variables are tagged with 〈1〉 or 〈2〉; tags may be mixed within an expression. We consider the usual binary
predicates {=,<,∈, . . . } where e ∈ e′ means e is a member of the list e′, and we take the always-true and always-
false predicates > and ⊥, and a set O of other predicates. Predicates can be combined using the usual connectives
{∧,∨,¬,→} and can quantify over first-order types (e.g., the integers, tuples, etc.). We will often interpret a
boolean expression e as the predicate e = true.

Predicates are interpreted as sets of product memories.
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Definition 2.2.4. Let Φ be a predicate. Given a logical context ρ, Φ is interpreted as a set ¹Φºρ ⊆ State× in the
expected way, e.g.,

¹e1〈1〉< e2〈2〉ºρ ¬ {(m1, m2) ∈ State× | ¹e1ºρm1 < ¹e2ºρm2}.

We can inject a predicate on single memories into a predicate on product memories; we call the resulting
predicate one-sided since it constrains just one of two memories.

Definition 2.2.5. Let Φ be a predicate on State. We define formulas Φ〈1〉 and Φ〈2〉 by replacing all program
variables x in Φ with x〈1〉 and x〈2〉, respectively, and we define

¹Φ〈1〉ºρ ¬ {(m1, m2) | m1 ∈ ¹Φºρ} and ¹Φ〈2〉ºρ ¬ {(m1, m2) | m2 ∈ ¹Φºρ}.

Valid judgments in PRHL relate two output distributions by lifting the post-condition.

Definition 2.2.6 (Barthe et al. (2009)). A judgment is valid in logical context ρ, written ρ |= c1 ∼ c2 : Φ =⇒ Ψ, if
for any two memories (m1, m2) ∈ ¹Φºρ there exists a lifting of Ψ relating the output distributions:

¹c1ºρm1 ¹Ψº
]
ρ ¹c2ºρm2.

For example, a valid judgment
|= c1 ∼ c2 : Φ=⇒ (=),

states that for any two input memories (m1, m2) satisfying Φ, the resulting output distributions from running c1
and c2 are related by lifted equality; by Proposition 2.1.10, these output distributions must be equal.

The logic PRHL: the proof rules

The logic PRHL includes a collection of logical rules to inductively build up a proof of a new judgment from known
judgments. The rules are superficially similar to those from standard Hoare logic. However, the interpretation of
judgments in terms of liftings means some rules in PRHL are not valid in Hoare logic, and vice versa.

Before describing the rules, we introduce some necessary notation. A system of logical rules inductively defines
a set of derivable formulas; we use the head symbol ` to mark such formulas. The premises in each logical rule are
written above the horizontal line, and the single conclusion is written below the line; for easy reference, the name
of each rule is given to the left of the line.

The main premises are judgments in the program logic, but rules may also use other side-conditions. For
instance, many rules require an assertion logic formula to be valid in all memories. Other side-conditions state
that a program is terminating, or that certain variables are not modified by the program. We use the head symbol
|= to mark valid side-conditions; while we could give a separate proof system for these premises, in practice they
are simple enough to check directly.

We also use notation for substitution in assertions. We write Φ {e/x} for the formula Φ with every occurrence
of the variable x replaced by e. Similarly, Φ {v1, v2/x1〈1〉, x2〈2〉} is the formula Φ where occurrences of the tagged
variables x1〈1〉, x2〈2〉 are replaced by v1, v2 respectively.

The rules of PRHL can be divided into three groups: two-sided rules, one-sided rules, and structural rules. All
judgments are parameterized by a logical context ρ, but since this context is assumed to be a fixed assignment of
logical variables—constant throughout the proof—we omit it from the rules. The two-sided rules in Fig. 2.2 apply
when the two programs in the conclusion judgment have the same top-level shape.

The rule [SKIP] simply states that skip instructions preserve the pre-condition. The rule [ASSN] handles
assignment instructions. It is the usual Hoare-style rule: if Ψ holds initially with e1〈1〉 and e2〈2〉 substituted for
x1〈1〉 and x2〈2〉, then Ψ holds after the respective assignment instructions.
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SKIP
` skip∼ skip : Φ=⇒ Φ

ASSN
` x1← e1 ∼ x2← e2 : Ψ {e1〈1〉, e2〈2〉/x1〈1〉, x2〈2〉}=⇒ Ψ

SAMPLE
f : supp(d1)→ supp(d2) is a bijection

` x1
$← d1 ∼ x2

$← d2 : ∀v ∈ supp(d1), Ψ {v, f (v)/x1〈1〉, x2〈2〉}=⇒ Ψ

SEQ
` c1 ∼ c2 : Φ=⇒ Ψ ` c′1 ∼ c′2 : Ψ =⇒ Θ

` c1; c′1 ∼ c2; c′2 : Φ=⇒ Θ

COND
|= Φ→ e1〈1〉= e2〈2〉 ` c1 ∼ c2 : Φ∧ e1〈1〉=⇒ Ψ ` c′1 ∼ c′2 : Φ∧¬e1〈1〉=⇒ Ψ

` if e1 then c1 else c′1 ∼ if e2 then c2 else c′2 : Φ=⇒ Ψ

WHILE
|= Φ→ e1〈1〉= e2〈2〉 ` c1 ∼ c2 : Φ∧ e1〈1〉=⇒ Φ
`while e1 do c1 ∼while e2 do c2 : Φ=⇒ Φ∧¬e1〈1〉

Figure 2.2: Two-sided PRHL rules

The rule [SAMPLE] is more subtle. In some ways it is the key rule in PRHL, allowing us to select a coupling for
a pair of sampling instructions. To gain intuition, the following rule is a special case:

SAMPLE*
f : supp(d)→ supp(d) is a bijection

` x $← d ∼ x $← d :>=⇒ f (x〈1〉) = x〈2〉

The conclusion states that there exists a coupling of a distribution d with itself such that each sample x from d
is related to f (x). Soundness of this rule crucially relies on d being uniform—as we have seen, any bijection f
induces a coupling of uniform distributions (cf. Example 2.1.4). It is possible to support general distributions at
the cost of a more complicated side-condition,2 but we will not need this generality. The full rule [SAMPLE] can
prove a post-condition of any shape: a post-condition holds after sampling if it holds before sampling, where x〈1〉
and x〈2〉 are replaced by any two coupled samples (v, f (v)).

The rule [SEQ] resembles the normal rule for sequential composition in Hoare logic, but its reading is more
subtle. In particular, note that the intermediate assertion Ψ is interpreted differently in the two premises: in the
first judgment it is a post-condition and interpreted as a relation between distributions over memories via lifting,
while in the second judgment it is a pre-condition and interpreted as a relation between memories.

The next two rules deal with branching commands. Rule [COND] requires that the guards e1〈1〉 and e2〈2〉 are
equal assuming the pre-condition Φ. The rule is otherwise similar to the standard Hoare logic rule: if we can prove
the post-condition Ψ when the guard is initially true and when the guard is initially false, then we can prove Ψ as
a post-condition of the conditional.

Rule [WHILE] uses a similar idea for loops. We again assume that the guards are initially equal, and we also
assume that they are equal in the post-condition of the loop body. Since the judgments are interpreted in terms of
couplings, this second condition is a bit subtle. For one thing, the rule does not require e1〈1〉 = e2〈2〉 in all possible

2Roughly speaking, the probability of any set S under d should be equal to the probability of f (S) under d.
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ASSN-L
` x1← e1 ∼ skip : Ψ {e1〈1〉/x1〈1〉}=⇒ Ψ

ASSN-R
` skip∼ x2← e2 : Ψ {e2〈2〉/x2〈2〉}=⇒ Ψ

SAMPLE-L
` x1

$← d1 ∼ skip : ∀v ∈ supp(d1), Ψ {v/x1〈1〉}=⇒ Ψ

SAMPLE-R
` skip∼ x2

$← d2 : ∀v ∈ supp(d2), Ψ {v/x2〈2〉}=⇒ Ψ

COND-L
` c1 ∼ c : Φ∧ e1〈1〉=⇒ Ψ ` c′1 ∼ c : Φ∧¬e1〈1〉=⇒ Ψ

` if e1 then c1 else c′1 ∼ c : Φ=⇒ Ψ

COND-R
` c ∼ c2 : Φ∧ e2〈2〉=⇒ Ψ ` c ∼ c′2 : Φ∧¬e2〈2〉=⇒ Ψ

` c ∼ if e2 then c2 else c′2 : Φ=⇒ Ψ

WHILE-L

` c1 ∼ skip : Φ∧ e1〈1〉=⇒ Φ
|= Φ→ Φ1〈1〉 Φ1 |=while e1 do c1 lossless

`while e1 do c1 ∼ skip : Φ=⇒ Φ∧¬e1〈1〉

WHILE-R

` skip∼ c2 : Φ∧ e2〈2〉=⇒ Φ
|= Φ→ Φ2〈2〉 Φ2 |=while e2 do c2 lossless

` skip∼while e2 do c2 : Φ=⇒ Φ∧¬e2〈2〉

Figure 2.3: One-sided PRHL rules

executions of the two programs—this would be a rather severe restriction, for instance ruling out programs where
e1〈1〉 and e2〈2〉 are probabilistic. Rather, the guards only need to be equal under the coupling of the two programs
given by the premise. The upshot is that by selecting appropriate couplings in the loop body, we can assume the
guards are equal when analyzing loops with probabilistic guards. The rule is otherwise similar to the usual Hoare
logic rule, where Φ is the loop invariant.

So far, we have seen rules that relate two programs of the same shape. These are the most commonly used
rules in PRHL, as relational reasoning is most powerful when comparing two highly similar (or even the same)
programs. However, in some cases we may need to reason about two programs with different shapes, even if the
two top-level commands are the same. For instance, if we can’t guarantee two executions of a program follow the
same path at a conditional statement under a coupling, we must relate the two different branches. For this kind of
reasoning, we can fall back on the one-sided rules in Fig. 2.3. These rules relate a command of a particular shape
with skip or an arbitrary command. Each rule comes in a left- and a right-side version.

The assignment rules, [ASSN-L] and [ASSN-R], relate an assignment instruction to skip using the usual Hoare
rule for assignment instructions. The sampling rules, [SAMPLE-L] and [SAMPLE-R], are similar; they relate a
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CONSEQ
` c1 ∼ c2 : Φ′ =⇒ Ψ ′ |= Φ→ Φ′ |= Ψ ′→ Ψ

` c1 ∼ c2 : Φ=⇒ Ψ

EQUIV
` c′1 ∼ c′2 : Φ=⇒ Ψ c1 ≡ c′1 c2 ≡ c′2

` c1 ∼ c2 : Φ=⇒ Ψ

CASE
` c1 ∼ c2 : Φ∧Θ =⇒ Ψ ` c1 ∼ c2 : Φ∧¬Θ =⇒ Ψ

` c1 ∼ c2 : Φ=⇒ Ψ

TRANS
` c1 ∼ c2 : Φ=⇒ Ψ ` c2 ∼ c3 : Φ′ =⇒ Ψ ′

` c1 ∼ c3 : Φ′ ◦Φ=⇒ Ψ ′ ◦Ψ

FRAME
` c1 ∼ c2 : Φ=⇒ Ψ FV(Θ)∩MV(c1, c2) =∅

` c1 ∼ c2 : Φ∧Θ =⇒ Ψ ∧Θ

Figure 2.4: Structural PRHL rules

sampling instruction to skip if the post-condition holds for all possible values of the sample. These rules represent
couplings where fresh randomness is used, i.e., where randomness is not shared between the two programs.

The conditional rules, [COND-L] and [COND-R], are similar to the two-sided conditional rule except there is no
assumption of synchronized guards—the other command c might not even be a conditional. If we can relate the
general command c to the true branch when the guard is true and relate c to the false branch when the guard is
false, then we can relate c to the whole conditional.

The rules for loops, [WHILE-L] and [WHILE-R], can only relate loops to the skip; a loop that executes multiple
iterations cannot be directly related to an arbitrary command that executes only once. These rules mimic the usual
loop rule from Hoare logic, with a critical side-condition: losslessness.

Definition 2.2.7. A command c is Φ-lossless if for any memory m satisfying Φ and every logical context ρ, the
output ¹cºρm is a proper distribution (i.e., it has total probability 1). We write Φ-lossless as the following judgment:

Φ |= c lossless

Losslessness is needed for soundness: skip produces a proper distribution on any input and liftings can only
relate sub-distributions with equal weights (Proposition 2.1.9), so the loop must also produce a proper distribution
to have any hope of coupling the output distributions. For the examples we will consider, losslessness is easy to
show since loops execute for a finite number of iterations; when there is no finite bound, proving losslessness
may require more sophisticated techniques (e.g., Barthe, Espitau, Gaboardi, Grégoire, Hsu, and Strub (2017a);
Chatterjee, Fu, and Goharshady (2016a); Chatterjee, Fu, Novotný, and Hasheminezhad (2016b); Chatterjee,
Novotný, and Žikelić (2017); Ferrer Fioriti and Hermanns (2015); McIver, Morgan, Kaminski, and Katoen (2018)).

Finally, PRHL includes a handful of structural rules which apply to programs of any shape. The first rule
[CONSEQ] is the usual rule of consequence, allowing us to strengthen the pre-condition and weaken the post-
condition—assuming more about the input and proving less about the output, respectively.

The rule [EQUIV] replaces programs by equivalent programs. This rule is particularly useful for reasoning
about programs of different shapes. Instead of using one-sided rules, which are often less convenient, we can
sometimes replace a program with an equivalent version and then apply two-sided rules. For simplicity, we use a
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strong notion of equivalence:
c1 ≡ c2 ¬ ¹c1ºρ = ¹c2ºρ

for every logical context ρ; more refined notions of equivalence are also possible, but will not be needed for our
purposes. For our examples, we just use a handful of basic program equivalences, e.g., c; skip≡ c and skip; c ≡ c.

The rule [CASE] performs a case analysis on the input. If we can prove a judgment when Θ holds initially and
a judgment when Θ does not hold initially, then we can combine the two judgments provided they have the same
post-condition.

The rule [TRANS] is the transitivity rule: given a judgment relating c1 ∼ c2 and a judgment relating c2 ∼ c3,
we can glue these judgments together to relate c1 ∼ c3. The pre- and post-conditions of the conclusion are given
by composing the pre- and post-conditions of the premises; for binary relations R and S, relation composition is
defined by

R ◦ S ¬ {(x1, x3) | ∃x2. (x1, x2) ∈ S ∧ (x2, x3) ∈R}.

The last rule [FRAME] is the frame rule (also called the rule of constancy): it states that an assertion Θ can
be carried from the pre-condition through to the post-condition as long as the variables MV(c1, c2) that may be
modified by the programs c1 and c2 don’t include any of the variables FV(Θ) appearing free in Θ; as usual, MV
and FV are defined syntactically by collecting the variables that occur in programs and assertions.

As expected, the proof system of PRHL is sound.

Theorem 2.2.8 (Barthe et al. (2009)). Let ρ be a logical context. If a judgment is derivable

ρ ` c1 ∼ c2 : Φ=⇒ Ψ,

then it is valid:
ρ |= c1 ∼ c2 : Φ=⇒ Ψ.

The coupling interpretation

A valid judgment ρ |= c1 ∼ c2 : Φ =⇒ Ψ implies that for any two input memories related by Φ, there exists a
coupling with support in Ψ between the two output distributions. By applying the results in Section 2.1, valid
judgments imply relational properties of programs.

Moreover, by viewing the rules as the discrete steps in a proof, we can identify common pieces of standard
coupling proofs. For instance, [SAMPLE] selects a coupling for corresponding sampling statements; the function f
lets us choose among different bijection couplings. The rule [SEQ] encodes a composition principle for couplings;
when two processes produce samples related by Ψ under a particular coupling, we can continue to assume this
relation when analyzing the remainder of the program. The structural rule [CASE] shows we can select between
two possible couplings depending on whether a predicate Θ holds. In short, not only is PRHL a logic for verifying
cryptographic protocols, it is also a formal logic for proofs by coupling.

2.3 Constructing couplings, formally

Now let’s see how to construct coupling proofs in the logic. We give three examples proving classical probabilistic
properties: equivalence, stochastic domination, and convergence.

Remark 2.3.1. There are some inherent challenges in presenting formal proofs on paper. Fundamentally, our
proofs are branching derivation trees. When such a proof is serialized, it may be hard to follow which part of
the derivation tree the paper proof corresponds to. To help organize the proof, we proceed loosely in a top-down
fashion, giving proofs and judgments for the most deeply nested parts of the program first and then gradually
zooming out to consider larger and larger parts of the whole program.
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Applications of sequential composition are also natural places to signpost the proof; we typically consider the
commands in order, unless the second command is much more complex than the first. Finally, for space reasons we
will gloss over applications of the assignment rule [ASSN] and minor uses of the rule of consequence [CONSEQ]; a
completely formal proof would also spell out these details.

Probabilistic equivalence

To warm up, we prove two programs probabilistically equivalent. Our example models perhaps the most basic
encryption scheme: the XOR cipher. Given a boolean s representing the secret message, the XOR cipher flips a fair
coin to draw the secret key k and then returns k⊕ s as the encrypted message. A receiving party who knows the
secret key can decrypt the message by computing k⊕ (k⊕ s) = s.

To prove secrecy of this scheme, we consider the following two programs:

k $← Flip;
r ← k⊕ s

k $← Flip;
r ← k

The first program xor1 implements the encryption function, storing the encrypted message into r. The second
program xor2 simply stores a random value into r. If we can show the distribution of r is the same in both
programs, then the XOR cipher is secure: the distribution on outputs is completely random, leaking no information
about the secret message s. In terms of PRHL, it suffices to prove the following judgment:

` xor1 ∼ xor2 :>=⇒ r〈1〉= r〈2〉

By validity of the logic, this judgment implies that for any two memories m1, m2, the output distributions are
related by a coupling that always returns outputs with equal values of r; by reasoning similar to Proposition 2.1.10,
this implies that the output distributions over r〈1〉 and r〈2〉 are equal.3

Before proving this judgment in the logic, we sketch the proof by coupling. If s〈1〉 is true, then we couple k to
take opposite values in the two runs. If s〈1〉 is false, then we couple k to be equal in the two runs. In both cases,
we conclude that the results r〈1〉, r〈2〉 are equal under the coupling.

To formalize this argument in PRHL, we use the [CASE] rule:

CASE

` xor1 ∼ xor2 : s〈1〉= true=⇒ r〈1〉= r〈2〉
` xor1 ∼ xor2 : s〈1〉 6= true=⇒ r〈1〉= r〈2〉

` xor1 ∼ xor2 :>=⇒ r〈1〉= r〈2〉 .

For the first premise we select the negation coupling using the bijection f = ¬ in [SAMPLE], apply the assignment
rule [ASSN], and combine with the sequencing rule [SEQ]. Concretely, we have

SAMPLE
f = ¬

` k $← Flip∼ k $← Flip : s〈1〉= true=⇒ k〈1〉= ¬k〈2〉 ∧ s〈1〉= true

ASSN
` r ← k⊕ s ∼ r ← k : k〈1〉= ¬k〈2〉 ∧ s〈1〉= true=⇒ r〈1〉= r〈2〉

and we combine the two judgments to give:

SEQ

` k $← Flip∼ k $← Flip : s〈1〉= true=⇒ k〈1〉= ¬k〈2〉 ∧ s〈1〉= true
` r ← k⊕ s ∼ r ← k : k〈1〉= ¬k〈2〉 ∧ s〈1〉= true=⇒ r〈1〉= r〈2〉

` xor1 ∼ xor2 : s〈1〉= true=⇒ r〈1〉= r〈2〉 .

3To be completely precise, Proposition 2.1.10 assumes that we have lifted equality, while here we only have a lifting where the variables r
are equal. An analogous argument shows that the marginal distributions of variable r must be equal.
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For the other case s〈1〉 6= true, we give the same proof except with the identity coupling in [SAMPLE]:

SAMPLE
f = id

` k $← Flip∼ k $← Flip : s〈1〉 6= true=⇒ k〈1〉= k〈2〉 ∧ s〈1〉 6= true

and the assignment rule, we have

ASSN
` r ← k⊕ s ∼ r ← k : k〈1〉= k〈2〉 ∧ s〈1〉 6= true=⇒ r〈1〉= r〈2〉 .

Combining the conclusions, we get

SEQ

` k $← Flip∼ k $← Flip : s〈1〉 6= true=⇒ k〈1〉= ¬k〈2〉 ∧ s〈1〉 6= true
` r ← k⊕ s ∼ r ← k : k〈1〉= k〈2〉 ∧ s〈1〉 6= true=⇒ r〈1〉= r〈2〉

` xor1 ∼ xor2 : s〈1〉 6= true=⇒ r〈1〉= r〈2〉 .

By [CASE], we conclude the desired post-condition r〈1〉= r〈2〉.

Stochastic domination

For our second example, we revisit Example 2.1.17 and replicate the proof in PRHL. The following program sdom
flips a coin T times and returns the number of coin flips that come up true:

i← 0; ct← 0;
while i < T do

i← i + 1;
s $← Flip;
ct← s ? ct+ 1 : ct

(The last line uses the ternary conditional operator—s ? ct+1 : ct is equal to ct+1 if s is true, otherwise equal to ct.)
We consider two runs of this program executing T1 and T2 iterations, where T1 ≤ T2 are logical variables; call

the two programs sdom1 and sdom2. By soundness of the logic and Proposition 2.1.14, the distribution of ct in the
second run stochastically dominates the distribution of ct in the first run if we can prove the judgment

` sdom1 ∼ sdom2 :>=⇒ ct〈1〉 ≤ ct〈2〉.

Encoding the argument from Example 2.1.17 in PRHL requires a bit of work. The main obstacle is that the
two-sided loop rule in PRHL can only analyze loops in a synchronized fashion, but this is not possible here: when
T1 < T2 the two loops run for different numbers of iterations, no matter how we couple the samples. To get
around this problem, we use the equivalence rule [EQUIV] to transform sdom into a more convenient form using
the following equivalence:

while e do c ≡while e ∧ e′ do c;while e do c

This transformation, known in the compilers literature as loop splitting (Callahan and Kennedy, 1988), separates
out the first iterations where e′ holds, and then runs the original loop to completion. We transform sdom2 as
follows:

sdom′2a ¬



















i← 0; ct← 0;
while i < T2 ∧ i < T1 do

i← i + 1;
s $← Flip;
ct← s ? ct+ 1 : ct;

i← 0; ct← 0;
while i < T1 do

i← i + 1;
s $← Flip;
ct← s ? ct+ 1 : ct;



















¬ sdom1

sdom′2b ¬











while i < T2 do
i← i + 1;
s $← Flip;
ct← s ? ct+ 1 : ct
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We aim to relate sdom′2a; sdom′2b to sdom1. First, we apply the two-sided rule [WHILE] to relate sdom1 to sdom′2a.
Taking the identity coupling with f = id in [SAMPLE], we relate the sampling in the loop body via

SAMPLE
f = id

` s $← Flip∼ s $← Flip :>=⇒ s〈1〉= s〈2〉

and establish the loop invariant
Θ ¬ i〈1〉= i〈2〉 ∧ ct〈1〉= ct〈2〉,

proving the judgment
` sdom1 ∼ sdom′2a :>=⇒ Θ.

Then we use the one-sided rule [WHILE-R] for the loop sdom′2b with loop invariant ct〈1〉 ≤ ct〈2〉:

` skip∼ sdom′2b : Θ =⇒ ct〈1〉 ≤ ct〈2〉.

Composing these two judgments with [SEQ] and applying [EQUIV] gives the desired judgment:

EQUIV
` sdom1; skip∼ sdom′2a; sdom′2b :>=⇒ ct〈1〉 ≤ ct〈2〉

` sdom1 ∼ sdom2 :>=⇒ ct〈1〉 ≤ ct〈2〉

using the equivalence sdom1; skip≡ sdom1.

Probabilistic convergence

In our final example, we build a coupling witnessing convergence of two random walks. Each process begins at
an integer starting point start, and proceeds for T steps. At each step it flips a fair coin. If true, it increases the
current position by 1; otherwise, it decreases the position by 1. Given two random walks starting at different initial
locations, we want to bound the distance between the two resulting output distributions in terms of T . Intuitively,
the position distributions spread out as the random walks proceed, tending towards the uniform distribution on
the even integers or the uniform distribution over the odd integers depending on the parity of the initial position
and the number of steps. If two walks initially have the same parity (i.e., their starting positions differ by an even
integer), then their distributions after taking the same number of steps T should approach one another in total
variation distance.

We model a single random walk with the following program rwalk:

pos← start; i← 0; hist← [start];
while i < T do

i← i + 1;
r $← Flip;
pos← pos+ (r ? 1 : −1);
hist← pos :: hist

The last command records the history of the walk in hist; this ghost variable does not affect the final output value,
but will be useful for our assertions.

By Theorem 2.1.16, we can bound the TV-distance between the position distributions by constructing a coupling
where the probability of pos〈1〉 6= pos〈2〉 tends to 0 as T increases. We don’t have the tools yet to reason about this
probability (we will revisit this point in the next chapter), but for now we can build the coupling and prove the
judgment

` rwalk∼ rwalk : start〈2〉 − start〈1〉= 2K =⇒ K + start〈1〉 ∈ hist〈1〉 → pos〈1〉= pos〈2〉
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where K is an integer logical variable. The pre-condition states that the initial positions are an even distance apart.
To read the post-condition, the predicate K + start〈1〉 ∈ hist〈1〉 holds if and only if the first walk has moved to
position K + start〈1〉 at some time in the past; if this has happened, then the two coupled positions must be equal.

Our coupling mirrors the two walks. Each step, we have the walks make symmetric moves by arranging
opposite samples. Once the walks meet, we have the walks match each other by coupling the samples to be equal.
In this way, if the first walk reaches start〈1〉+ K , then the second walk must be at start〈2〉 − K since both walks
are coupled to move symmetrically. In this case, the initial condition start〈2〉 − start〈1〉= 2K gives

pos〈1〉= start〈1〉+ K = start〈2〉 − K = pos〈2〉

so the walks meet and continue to share the same position thereafter. This argument requires the starting positions
to be an even distance apart so the positions in the two walks always have the same parity; if the two starting
positions are an odd distance apart, then the two distributions after T steps have disjoint support and the coupled
walks can never meet.

To formalize this argument in PRHL, we handle the loop with the two-sided rule [WHILE] and invariant

Θ ¬







|hist〈1〉|> 0∧ |hist〈2〉|> 0

K + start〈1〉 ∈ hist〈1〉 → pos〈1〉= pos〈2〉
K + start〈1〉 /∈ hist〈1〉 → pos〈2〉 − pos〈1〉= 2(K − (hd(hist〈1〉)− start〈1〉)),

where hd(hist) is the first element (the head) of the non-empty list hist. The last two conditions model the two
cases. If the first walk has already visited K + start〈1〉, the walks have already met under the coupling and they
must have the same position. Otherwise, the walks have not met. If d ¬ hd(hist〈1〉)− start〈1〉 is the (signed)
distance the first walk has moved away from its starting location and the two walks are initially 2K apart, then the
current distance between coupled positions must be 2(K − d).

To show the invariant is preserved, we perform a case analysis with [CASE]. If K + start〈1〉 ∈ hist〈1〉 holds then
the walks have already met in the past and currently have the same position (by Θ). So, we select the identity
coupling in [SAMPLE]:

SAMPLE
f = id

` r $← Flip∼ r $← Flip : K + start〈1〉 ∈ hist〈1〉=⇒ r〈1〉= r〈2〉 .

Since K + start〈1〉 ∈ hist〈1〉 → pos〈1〉= pos〈2〉 holds at the start of the loop, we know pos〈1〉= pos〈2〉 at the end
of the loop; since K + start〈1〉 ∈ hist〈1〉 is preserved by the loop body, the invariant Θ holds.

Otherwise if K + start〈1〉 /∈ h〈1〉, then the walks have not yet met and should be mirrored. So, we select the
negation coupling with f = ¬ in [SAMPLE]:

SAMPLE
f = ¬

` r $← Flip∼ r $← Flip : K + start〈1〉 /∈ hist〈1〉=⇒¬r〈1〉= r〈2〉

To show the loop invariant, there are two cases. If K + start〈1〉 ∈ h〈1〉 holds after the body, the two walks have just
met for the first time and pos〈1〉= pos〈2〉 holds. Otherwise, the walks remain mirrored: pos〈1〉 increased by r〈1〉
and pos〈2〉 decreased by r〈1〉, so pos〈2〉−pos〈1〉 = 2(K +(hd(hist〈1〉)− start〈1〉)) and the invariant Θ is preserved.

Putting it all together, we have the desired judgment:

` rwalk∼ rwalk : start〈2〉 − start〈1〉= 2K =⇒ K + start〈1〉 ∈ h〈1〉 → pos〈1〉= pos〈2〉.

While this judgment describes a coupling between the position distributions, we need to analyze finer properties
of the coupling distribution to apply Theorem 2.1.16—namely, we must bound the probability that pos〈1〉 is not
equal to pos〈2〉. We will consider how to extract this information in the next chapter.
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2.4 Related work

Relational Hoare logics and probabilistic couplings have been extensively studied in disparate research communities.

Relational Hoare logics

The logic PRHL is a prime example of a relational program logic, which extend standard Floyd-Hoare logics to prove
properties about two programs. Benton (2004) first designed a relational version of Hoare logic called RHL to
prove equivalence between two (deterministic) programs. Benton used his logic to verify compiler transformations,
showing the original program is equivalent to the transformed program. Relational versions of other program
logics have also been considered, including an extension of separation logic by Yang (2007) to prove relational
properties of pointer-manipulating programs. There is nothing particularly special about relating exactly two
programs; recently, Sousa and Dillig (2016) give a Hoare logic for proving properties of k executions of the same
program for arbitrary k.

Barthe et al. (2009) extended Benton’s work to prove relational properties of probabilistic programs, leading
to the logic PRHL. As we have seen, the key technical insight is to interpret the relational post-condition as a
probabilistic lifting between two output distributions. Barthe et al. (2009) used PRHL to verify security properties
for a variety of cryptographic protocols by mimicking the so-called game-hopping proof technique (Bellare and
Rogaway, 2006; Shoup, 2004), where the original program is transformed step-by-step to an obviously secure
version (e.g., a program returning a random number). Security follows if each transformation approximately
preserves the program semantics. Our analysis of the XOR cipher is a very simple example of this technique; more
sophisticated proofs chain together dozens of transformations.

Probabilistic couplings and liftings

Couplings are a well-studied tool in probability theory; readers can consult the lecture notes by Lindvall (2002) or
the textbooks by Thorisson (2000) and Levin et al. (2009) for entry points into this vast literature.

Probabilistic liftings were initially proposed in research on bisimulation, techniques for proving equivalence
of transition systems. Larsen and Skou (1991) were the first to consider a probabilistic notion of bisimulation.
Roughly speaking, their definition considers an equivalence relation E on states and requires that any two states in
the same equivalence class have the same probability of stepping to any other equivalence class. The construction
for arbitrary relations arose soon after, when researchers generalized probabilistic bisimulation to probabilistic
simulation; Jonsson and Larsen (1991, Definition 4.3) proposes a satisfaction relation using witness distributions,
similar to the definition used in PRHL. Desharnais (1999, Definition 3.6.2) and Segala and Lynch (1995, Definition
12) give an alternative characterization without witness distributions, similar to Strassen’s theorem (Strassen,
1965); Desharnais (1999, Theorem 7.3.4) observed that both definitions are equivalent in the finite case via
the max flow-min cut theorem. Probabilistic (bi)simulation can be characterized logically, i.e., two systems are
(bi)similar if and only if they satisfy the same formulas in some modal logic (Desharnais, Edalat, and Panangaden,
2002; Desharnais, Gupta, Jagadeesan, and Panangaden, 2003; Fijalkow, Klin, and Panangaden, 2017; Larsen and
Skou, 1991). Deng and Du (2011) survey logical, metric, and algorithmic characterizations of these relations.

Probabilistic liftings have proven to be a convenient abstraction for many styles of formal reasoning beyond
bisimulation and program logics. For instance, Barthe, Fournet, Grégoire, Strub, Swamy, and Zanella-Béguelin
(2014a) combine probabilistic lifting with a probability monad to prove relational properties in RF?, a refinement
type system for a probabilistic, functional language.



Chapter 3

From coupling proofs to product programs

As we have seen, valid judgments in PRHL imply a coupling of two output distributions with a particular support.
Some applications of proof by coupling need more detailed information to conclude a relational property; notable
examples include coupling proofs for convergence, like the random walk example from the previous chapter.
While a valid judgment gives no further information beyond the support of the coupling, we usually have more
information at hand—often, we have a proof using the logical rules in PRHL. Since proof rules correspond to
steps in proofs by coupling, which indirectly construct a coupling distribution, the structure of PRHL proofs should
somehow encode the coupling.

Indeed, this is the case. While we cannot hope to explicitly list the probabilities of every pair under a coupling—
for one thing, there may be infinitely many—we show that every PRHL derivation encodes a probabilistic program
generating the witness. Intuitively, a coupling proof describes how to simulate two probabilistic processes as one,
by sharing randomness. Accordingly, proofs in PRHL encode how to combine two programs into one; the witness
of a coupling is just the output distribution of the combined program. This construction, which we call the coupled
product, draws a correspondence between coupling proofs and probabilistic product programs, recalling a theme
in computer science and logic: proofs can be viewed as programs.

To make our ideas concrete, we design an extension of PRHL called ×PRHL (product PRHL), where judgments
construct a coupled product program. Since this program depends on the whole proof derivation and not just
the final judgment, there may be multiple ×PRHL judgments corresponding to a given PRHL judgment. We first
present a core version of ×PRHL with logical rules based on PRHL (Section 3.1), followed by a novel loop rule that
allows asynchronous reasoning (Section 3.2). After establishing soundness (Section 3.3), we apply our logic to
prove convergence and rapid mixing for probabilistic processes (Section 3.4), modeling examples of shift couplings
(Section 3.5) and path couplings (Section 3.6). Finally, we compare the coupled product to prior constructions
(Section 3.7).

3.1 The core logic ×PRHL

The logic ×PRHL extends PRHL by pairing each judgment with a product program.

Judgments and validity

Judgments in ×PRHL have the following form:
§

Φ

ª

c1
c2

§

Ψ

ª

É c×

Just like in PRHL, c1 and c2 are probabilistic programs and the pre- and post-conditions Φ and Ψ are assertions on
product memories. The new component is the coupled product c×, which simulates two correlated executions of c1
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and c2. To ensure the two executions do not interfere with one another, c× operates on a product memory with
two copies of each variable, tagged with 〈1〉 and 〈2〉.

Semantic validity in ×PRHL is very similar to validity in PRHL: the output distribution of the product program
on two related inputs couples the output distributions of the two given programs.

Definition 3.1.1. Suppose c1, c2 have variables in X ∪L, Φ and Ψ are predicates over X 〈1〉 ∪X 〈2〉 ∪L, and c×
has variables in X 〈1〉 ∪X 〈2〉 ∪L. An ×PRHL judgment is valid in a logical context ρ, written

ρ |=
§

Φ

ª

c1
c2

§

Ψ

ª

É c×,

if for every two memories (m1, m2) ∈ ¹Φºρ we have

1. supp(¹c×ºρ(m1, m2)) ⊆ ¹Ψºρ;

2. ¹c1ºρm1 = π1(¹c×ºρ(m1, m2)); and

3. ¹c2ºρm2 = π2(¹c×ºρ(m1, m2)).

(Recall π1,π2 are the first and second projections from SDistr(State×) to SDistr(State).)

Core proof rules

Proof rules in ×PRHL describe how to construct product programs. Like their PRHL counterparts, the core rules of
×PRHL can be divided into three groups: two-sided rules, one-sided rules, and structural rules.

The two-sided rules are presented in Fig. 3.1. For the first rule [SKIP], since the two programs don’t have any
effect, the coupled program also has no effect. The next pair of rules handle assignment and sampling statements.
The rule [ASSN] relates two assignment statements; the product program simply performs both operations on the
product memory. The rule [SAMPLE] for random sampling is more interesting. Just like its counterpart in PRHL,
this rule is parameterized by a bijection f between the supports of the two distributions. The product program
draws the first sample for x1〈1〉 from d1 and then assigns x2〈2〉 deterministically with f (x1〈1〉)—this is the sample
corresponding to x1〈1〉 under the coupling. In this way, the product program simulates two random draws with a
single source of randomness.

The sequential composition rule [SEQ] relates two sequencing commands. The product program is simply the
sequential composition of the product programs for the first and second commands, highlighting the compositional
nature of couplings.

The final pair of rules relate branching commands. Just like in PRHL, the pre-condition must ensure that the
guards are equal. In the rule [COND], the premises give two product programs c and c′ relating the two true
branches and the two false branches, respectively. The product program for the conditional first branches on the
guard and then executes the product program for the corresponding branch. In the rule [WHILE], the product
program for the loop executes the product program for the body while the guard remains true.

Next we consider the one-sided proof rules in Fig. 3.2. The first four rules for assignment and sampling,
[ASSN-L]/[ASSN-R] and [SAMPLE-L]/[SAMPLE-R], relate a command with skip; the product program simply
executes the assignment or sampling command on the indicated side.

The one-sided rules for conditionals, [COND-L] and [COND-R], relate a conditional to an arbitrary command
(c2 and c1, respectively). The premises give two product programs relating the general command with the true
and false branches of the conditional. The coupled product branches on the guard—e1〈1〉 or e2〈2〉—and runs the
product program for the corresponding branch.

The one-sided rules for loops, [WHILE-L] and [WHILE-R], are similar. The premises give a product program
relating the body of the loop to skip; the resulting product program for the loop executes the product program for
the body while the loop guard is true. Like the analogous rules in PRHL, the loop must be lossless.
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SKIP

`
§

Φ

ª

skip
skip

§

Φ

ª

É skip

ASSN

`
§

Ψ {e1〈1〉, e2〈2〉/x1〈1〉, x2〈2〉}
ª

x1← e1
x2← e2

§

Ψ

ª

É
x1〈1〉 ← e1〈1〉;
x2〈2〉 ← e2〈2〉

SAMPLE
f : supp(d1)→ supp(d2) bijection

`
§

∀v ∈ supp(d1), Ψ {v, f (v)/x1〈1〉, x2〈2〉}
ª

x1
$← d1

x2
$← d2

§

Ψ

ª

É
x1〈1〉 $← d1;
x2〈2〉 ← f (x1〈1〉)

SEQ

`
§

Φ

ª

c1
c2

§

Ψ

ª

É c `
§

Ψ

ª

c′1
c′2

§

Θ

ª

É c′

`
§

Φ

ª

c1; c′1
c2; c′2

§

Θ

ª

É c; c′

COND

|= Φ→ e1〈1〉= e2〈2〉

`
§

Φ∧ e1〈1〉
ª

c1
c2

§

Ψ

ª

É c `
§

Φ∧¬e1〈1〉
ª

c′1
c′2

§

Ψ

ª

É c′

`
§

Φ

ª

if e1 then c1 else c′1
if e2 then c2 else c′2

§

Ψ

ª

É if e1〈1〉 then c else c′

WHILE

|= Φ→ e1〈1〉= e2〈2〉 `
§

Φ∧ e1〈1〉
ª

c1
c2

§

Φ

ª

É c

`
§

Φ

ª

while e1 do c1
while e2 do c2

§

Φ∧¬e1〈1〉
ª

Éwhile e1〈1〉 do c

Figure 3.1: Two-sided ×PRHL rules

Finally, we come to the structural rules in Fig. 3.3. The rules [CONSEQ] and [EQUIV] are straightforward: the
former rule preserves the product program of the premise, while the latter rule replaces programs by equivalent
programs. The rule [CASE] is more interesting; recall that this rule performs a case analysis on the two input
memories. The product programs from the two logical cases are combined into a final product program that
branches on the predicate and selects the corresponding product program. In this way, a logical case analysis is
realized by a branching statement in the product program. Unlike in PRHL, this rule performs a case analysis
on an expression e instead of a general predicate Θ in the assertion logic; this restriction is needed to reflect the
predicate as a guard expression in the product.1 Finally, [FRAME] is the ×PRHL version of the frame rule.

Remark 3.1.2. The careful reader may notice that we do not give an analogous rule for the transitivity rule [TRANS]
from PRHL. Given two product programs for the premises, it is not clear how to construct a product program for
the conclusion; intuitively, we want to somehow interleave the product programs together while carefully aligning
samples. Finding a ×PRHL version of this rule is an interesting open problem.

1For instance, there is no boolean expression corresponding to universal or existential quantification; such an expression would typically
not be computable.
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ASSN-L

`
§

Ψ {e1〈1〉/x1〈1〉}
ª

x1← e1
skip

§

Ψ

ª

É x1〈1〉 ← e1〈1〉

ASSN-R

`
§

Ψ {e2〈2〉/x2〈2〉}
ª

skip
x2← e2

§

Ψ

ª

É x2〈2〉 ← e2〈2〉

SAMPLE-L

`
§

∀v ∈ supp(d1), Ψ {v/x1〈1〉}
ª

x1
$← d1

skip

§

Ψ

ª

É x1〈1〉 $← d1

SAMPLE-R

`
§

∀v ∈ supp(d2), Ψ {v/x2〈2〉}
ª

skip
x2

$← d2

§

Ψ

ª

É x2〈2〉 $← d2

COND-L

`
§

Φ∧ e1〈1〉
ª

c1
c2

§

Ψ

ª

É c `
§

Φ∧¬e1〈1〉
ª

c′1
c2

§

Ψ

ª

É c′

`
§

Φ

ª

if e1 then c1 else c′1
c2

§

Ψ

ª

É if e1〈1〉 then c else c′

COND-R

`
§

Φ∧ e2〈2〉
ª

c1
c2

§

Ψ

ª

É c `
§

Φ∧¬e2〈2〉
ª

c1
c′2

§

Ψ

ª

É c′

`
§

Φ

ª

c1
if e2 then c2 else c′2

§

Ψ

ª

É if e2〈2〉 then c else c′

WHILE-L

`
§

Φ∧ e1〈1〉
ª

c1
skip

§

Φ

ª

É c |= Φ→ Φ1〈1〉 Φ1 |=while e1 do c1 lossless

`
§

Φ

ª

while e1 do c1
skip

§

Φ∧¬e1〈1〉
ª

Éwhile e1〈1〉 do c

WHILE-R

`
§

Φ∧ e2〈2〉
ª

skip
c2

§

Φ

ª

É c |= Φ→ Φ2〈1〉 Φ2 |=while e2 do c2 lossless

`
§

Φ

ª

skip
while e2 do c2

§

Φ∧¬e2〈2〉
ª

Éwhile e2〈2〉 do c

Figure 3.2: One-sided ×PRHL rules
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CONSEQ

`
§

Φ′
ª

c1
c2

§

Ψ ′
ª

É c |= Φ→ Φ′ |= Ψ ′→ Ψ

`
§

Φ

ª

c1
c2

§

Ψ

ª

É c

EQUIV

`
§

Φ

ª

c′1
c′2

§

Ψ

ª

É c′ c1 ≡ c′1 c2 ≡ c′2 c ≡ c′

`
§

Φ

ª

c1
c2

§

Ψ

ª

É c

CASE

`
§

Φ∧ e
ª

c1
c2

§

Ψ

ª

É c `
§

Φ∧¬e
ª

c1
c2

§

Ψ

ª

É c′

`
§

Φ

ª

c1
c2

§

Ψ

ª

É if e then c else c′

FRAME

`
§

Φ

ª

c1
c2

§

Ψ

ª

É c FV(Θ)∩MV(c) =∅

`
§

Φ∧Θ
ª

c1
c2

§

Ψ ∧Θ
ª

É c

Figure 3.3: Structural ×PRHL rules

WHILE-GEN

|= Φ→ (e1〈1〉 ∨ e2〈2〉) = e |= Φ∧ e→ p0 ⊕ p1 ⊕ p2
|= Φ∧ p0 ∧ e→ e1〈1〉= e2〈2〉 |= Φ∧ p1 ∧ e→ e1〈1〉 ∧Φ1〈1〉 |= Φ∧ p2 ∧ e→ e2〈2〉 ∧Φ2〈2〉

Φ1 |=while e1 ∧ p1 do c1 lossless Φ2 |=while e2 ∧ p2 do c2 lossless

`
§

Φ∧ e ∧ p0

ª

(if e1 then c1)
K1

(if e2 then c2)
K2

§

Φ

ª

É c′0 with K1 > 0, K2 > 0

`
§

Φ∧ e1 ∧ p1

ª

c1
skip

§

Φ

ª

É c′1 `
§

Φ∧ e2 ∧ p2

ª

skip
c2

§

Φ

ª

É c′2

`
§

Φ

ª

while e1 do c1
while e2 do c2

§

Φ∧¬e1〈1〉 ∧ ¬e2〈2〉
ª

É
while e do if p0 then c′0
else if p1 then c′1 else c′2

Figure 3.4: Asynchronous loop rule [WHILE-GEN] for ×PRHL

3.2 An asynchronous loop rule

The logic ×PRHL inherits two kinds of loop rules from PRHL. The two-sided rule relates two loops by relating
their bodies, a useful principle since the loop bodies are often highly similar. However, this rule requires that the
two loops remain synchronized under the coupling. The one-sided loop rules don’t require synchronization, but
they are significantly weaker—they can only relate a loop to the trivial program skip. Taking a slightly broader
view, each rule captures one way of analyzing loops: (i) relating a block of iterations in the first with a block of
iterations in the second; (ii) relating one iteration in the first with no iterations in the second; and (iii) relating
one iteration in the second with no iterations in the first.
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To support all three kinds of reasoning, we give a new rule [WHILE-GEN] in Fig. 3.4. The three analyses can be
freely intermixed, resulting in a powerful principle for analyzing loops asynchronously. We will step through the
premises from top to bottom, starting with the side-conditions. First, we specify an expression e in the product
memory that is true if either loop guard is true. Then we specify three boolean flags p0, p1, p2 indicating which of
the three cases to apply; exactly one of the flags must be true. The second group of premises ensure the flags
and the loop guards are consistent: if p0 is true, then both guards should be true since we are relating iterations
from both loops; if p1 is true, then the first guard e1 should be true since we want to relate one iteration in the
first loop; if p2 is true, then the second guard e2 should be true to relate one iteration in the second loop. The
remaining side-conditions guarantee the product programs for the one-sided cases terminate with probability 1;
these conditions are needed for soundness. (Intuitively, the one-sided cases can effectively couple skip to a loop.
This kind of coupling requires losslessness, as we saw in the one-sided loop rules and in Proposition 2.1.9.)

The main ×PRHL premises handle the three cases. We write cK with a constant K for

cK ¬ c ; · · · ; c
︸ ︷︷ ︸

K iterations

The first ×PRHL premise handles the first case: p0 is true so we relate K1 iterations of the first loop with K2
iterations of the second loop, skipping iterations if either loop terminates early. The second and third ×PRHL
premises handle the second and third cases: p1 or p2 is true, and we relate one iteration of the first or second
side to skip. In the conclusion, the product program interleaves the two original loops depending on the case—it
branches on p0, p1, p2, and runs the product program from the corresponding premise.

While we introduce [WHILE-GEN] for ×PRHL, simply dropping the product programs recovers a sound loop rule
for PRHL. Some proofs that previously required reasoning outside of the program logic, for instance using program
equivalences, can be handled with the extended loop rule. For example, consider the stochastic domination
example we first saw in Example 2.1.17 with the program sdom:

i← 0; ct← 0;
while i < T do

i← i + 1;
s $← Flip;
ct← s ? ct+ 1 : ct

and recall we considered two versions of this program, sdom1 and sdom2, where the number of iterations was T1
and T2 respectively with T1 ≤ T2. When we previously proved the judgment

` sdom1 ∼ sdom2 :>=⇒ ct〈1〉 ≤ ct〈2〉,

showing stochastic domination, we crucially used the program equivalence rule [EQUIV] to split the loop in sdom2
into two pieces, using the two-sided rule [WHILE] to analyze the first piece and the one-sided rule [WHILE-R] to
analyze the second piece. The PRHL version of the general rule [WHILE-GEN] subsumes both loop rules, allowing
us to freely switch between two-sided and one-sided reasoning. As a result, we can prove the desired judgment
without transforming the programs by using [WHILE-GEN], with parameters

K1, K2 ¬ 1

p0 ¬ i〈1〉< T1

p1 ¬ false

p2 ¬ T1 ≤ i〈2〉< T2

Φ¬ (i〈1〉< T1→ i〈1〉= i〈2〉)∧ ct〈1〉 ≤ ct〈2〉.

When the first guard p0 is true, both loops have not terminated and we can analyze the bodies synchronously. The
second guard p1 is always false since we never want to skip iterations on the second side, while the third guard
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p2 is true once the first program has terminated—in this case, we advance the second program alone. We take
the couplings from before: the identity coupling in [SAMPLE] when p0 is true, and the one-sided rule [SAMPLE-R]
when p2 is true.

3.3 Soundness of the logic

The full proof system of ×PRHL is sound.

Theorem 3.3.1 (Soundness of ×PRHL). Let ρ be a logical context. If a judgment is derivable

ρ `
§

Φ

ª

c1
c2

§

Ψ

ª

É c×,

then it is valid:

ρ |=
§

Φ

ª

c1
c2

§

Ψ

ª

É c×.

Proof sketch. By induction on the derivation, performing a case analysis on the final rule. Most of the cases are
straightforward. The most complex case, by far, handles the asynchronous rule [WHILE-GEN]. While we can
derive the other loop rules (the two-sided rule [WHILE] and the one-sided rules [WHILE-L]/[WHILE-R]) from
[WHILE-GEN] and some basic program equivalences, we consider the simpler loop rules as separate cases to
decompose the proof for [WHILE-GEN] as much as possible. We present the detailed proof in Appendix A.

The natural counterpart to soundness is completeness: valid judgments should be derivable in the proof system.
It is possible to show ×PRHL is complete in a certain sense for deterministic programs,2 but currently very little is
known about probabilistic programs. We return to this point in Chapter 6.

3.4 Proving probabilistic convergence

The coupled product generates the coupling in a ×PRHL judgment. By analyzing the product program, we can
bound the probability of specific events in the coupling distribution to prove quantitative probabilistic relational
properties. To demonstrate, we construct couplings in ×PRHL for proving convergence bounds for probabilistic
processes, using standard coupling arguments and more advanced variants like shift coupling and path coupling.
In each case, we first build the coupling as an ×PRHL judgment and then analyze the coupled product.

Our main goal in this section is to demonstrate the product construction and to show how it mirrors the
corresponding informal proof by coupling. While constructing the coupling and generating the coupled product are
easily handled by ×PRHL, formally reasoning about the product program is more difficult. The target properties
are probabilistic and non-relational, beyond the reach of ×PRHL. To keep the exposition as light as possible, we
will sketch our proofs about the coupled product in a standard mathematical style instead of introducing a separate
formal system (e.g., PPDL (Kozen, 1985) or PGCL (Morgan, McIver, and Seidel, 1996)). General-purpose theorem
provers (such as COQ or AGDA) should also be able to prove the required properties after formalizing enough
of probability theory, but such an approach would be quite heavy. Developing more lightweight, easier-to-use
techniques for probabilistic non-relational properties remains a significant open challenge.

2More formally, relatively complete for terminating programs given basic equivalences like c ≡ c; skip.
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We begin by revisiting the simple random walk program rwalk from Section 2.3:

pos← start; i← 0; hist← [start];
while i < T do

i← i + 1;
r $← Flip;
pos← pos+ (r ? 1 : −1);
hist← pos :: hist

Previously, we proved the following judgment in PRHL:

` rwalk∼ rwalk : start〈2〉 − start〈1〉= 2K =⇒ K + start〈1〉 ∈ hist〈1〉 → pos〈1〉= pos〈2〉.

The two walks are initially 2K apart and the predicate K + start〈1〉 ∈ hist〈1〉 is true exactly when the walks have
met under the coupling. Replaying the proof using the corresponding ×PRHL rules yields

`
§

start〈2〉 − start〈1〉= 2K
ª

rwalk
rwalk

§

K + start〈1〉 ∈ hist〈1〉 → pos〈1〉= pos〈2〉
ª

É rwalk×, (3.1)

where rwalk× is the following product program:

pos〈1〉 ← start〈1〉; pos〈2〉 ← start〈2〉;
i〈1〉 ← 0; i〈2〉 ← 0;
hist〈1〉 ← [start〈1〉]; hist〈2〉 ← [start〈2〉];
while i〈1〉< T do

i〈1〉 ← i〈1〉+ 1; i〈2〉 ← i〈2〉+ 1;
if pos〈1〉= pos〈2〉 then

r〈1〉 $← Flip; r〈2〉 ← r〈1〉;
pos〈1〉 ← pos〈1〉+ (r〈1〉 ? 1 : −1);
pos〈2〉 ← pos〈2〉+ (r〈2〉 ? 1 : −1);
hist〈1〉 ← pos〈1〉 :: hist〈1〉; hist〈2〉 ← pos〈2〉 :: hist〈2〉

else
r〈1〉 $← Flip; r〈2〉 ← ¬r〈1〉;
pos〈1〉 ← pos〈1〉+ (r〈1〉 ? 1 : −1);
pos〈2〉 ← pos〈2〉+ (r〈2〉 ? 1 : −1);
hist〈1〉 ← pos〈1〉 :: hist〈1〉; hist〈2〉 ← pos〈2〉 :: hist〈2〉

The structure of the coupled product reflects the coupling proof. For instance, the loop is introduced by the
two-sided rule [WHILE], and the conditional statement is introduced by the case analysis [CASE]. Intuitively, this
program simulates two coupled random walks. Each iteration, the program branches on whether the positions of
the two walks are equal or not, setting the two samples r〈1〉 and r〈2〉 to be equal if so, and opposite if not. Thus
the positions pos〈1〉 and pos〈2〉 trace out two mirrored walks when the positions are different, and a single walk
once the positions coincide.

Now, we can bound the distance between the position distributions in the original walks by bounding the
probability of K + start〈1〉 /∈ hist〈1〉 in rwalk×. We need a basic result from the theory of random walks.

Theorem 3.4.1 (see, e.g., Levin et al. (2009, Theorem 2.17)). Let X0, X1, . . . be the positions of a simple random
walk on the integers starting at X0 = q ∈ Z. The probability the walk does not reach 0 within t steps is at most

Pr[X0, . . . , X t 6= 0]≤
12q
p

t
.
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Now we bound the rate of convergence of two random walks.

Theorem 3.4.2. Let m1, m2 be two memories such that m2(start)−m1(start) = 2K for K ∈ Z. Let µ1,µ2 be the final
distributions over memories:

µ1 ¬ ¹rwalkºm1 and µ2 ¬ ¹rwalkºm2.

Let η1,η2 be the final distributions over positions:

η1 ¬ ¹posº](µ1) and η2 ¬ ¹posº](µ2).

Then the distance between the two output distributions over positions is at most

dtv (η1,η2)≤
12K
p

T
.

Proof. The basic idea is to analyze the coupled product in the ×PRHL judgment Eq. (3.1) and then apply the
coupling method (Theorem 2.1.16), but we need to handle one detail before we can string these results together.
The coupling method requires a coupling such that the two samples are equal with high probability, but the
coupling from the post-condition of Eq. (3.1) only describes when the two positions are equal—the coupling is a
distribution over pairs of whole memories, which may be different even if the positions are equal.

To address this issue, let µ× be the witness in Eq. (3.1) generated by the coupled product and let η× be the
projection to the positions:

µ× ¬ ¹rwalk×º(m1, m2) and η× ¬ ¹(pos〈1〉, pos〈2〉)º](µ×).

We directly calculate

Pr
(p1,p2)∼η×

[p1 6= p2] = Pr
(m1,m2)∼µ×

[m1(pos〈1〉) 6= m2(pos〈2〉)]

≤ Pr
(m1,m2)∼µ×

[(m1, m2) ∈ ¹K + start〈1〉 /∈ hist〈1〉º],

where the inequality follows by the post-condition in Eq. (3.1): pairs of memories satisfying K + start〈1〉 ∈ hist〈1〉
must have equal positions.

So, it suffices to upper bound the probability of K + start〈1〉 /∈ hist〈1〉. Looking at the coupled product rwalk×,
as long as the two walks have not met, the distance between the two coupled walks behaves like a single random
walk: increasing by 2 with probability 1/2, decreasing by 2 with probability 1/2. This derived random walk starts
at start〈2〉−start〈1〉 = 2K; if it reaches 0 before T steps, then the two original walks meet and K+start〈1〉 ∈ hist〈1〉
holds. Accordingly, Theorem 3.4.1 gives

Pr
(m1,m2)∼µ×

[(m1, m2) ∈ ¹K + start〈1〉 /∈ hist〈1〉º]≤
12K
p

T

so we can conclude

dtv (η1,η2) = dtv (π1(η×),π2(η×))≤ Pr
(p1,p2)∼η×

[p1 6= p2]≤
12K
p

T
,

where the first inequality follows by the coupling method (Theorem 2.1.16).

Hence, the distributions approach one another as the number of timesteps T increases.
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3.5 Shift couplings

In the previous example, we were able to construct the coupling synchronously because the two coupled walks
meet at the same iteration. This may not be the case in more complex proofs. To demonstrate, we consider an
example of a shift coupling—a coupling where the two processes meet at two random timesteps. To construct
this kind of coupling, we cannot use the synchronous rule [WHILE] since we may need to relate samples across
different iterations. Instead, we will apply our asynchronous rule [WHILE-GEN].

Our example is called the Dynkin process.3 This process maintains a position pos ∈ N, initialized to start ∈
[0, . . . , 10]. Each step, it draws a uniformly random number r from [1, . . . , 10] and increments the position by
r. The process stops as soon as pos exceeds T ∈ N, returning the final value as the output. The following code
implements the Dynkin process:

pos← start;
hist← [start];
while pos< T do

r $← Unif([1, . . . , 10]);
pos← pos+ r;
hist← pos :: hist

We call this program dynkin and we write dynbody for the loop body. We use a ghost variable hist to keep track of
the history of visited positions, just like we did for the random walk. We will analyze two executions of dynkin
starting at different locations and show the distributions over final positions converge as T increases.

Before seeing the proof in ×PRHL, let’s first sketch the coupling argument. If the two processes have the same
position, then we couple the samplings to return equal values; this keeps the two positions equal. Otherwise, we
sample in the process that is behind, temporarily pausing the leading process. Since the sampled process moves
at least one step forward in each iteration, the lagging process will overtake (or land on) the leading process in
finitely many steps, when we will switch to one of the other cases.

We perform this reasoning in ×PRHL using [WHILE-GEN] with K1 = K2 = 1. We take the joint guard

e ¬ (pos〈1〉< T )∨ (pos〈2〉< T ),

and flags
p0 ¬ pos〈1〉= pos〈2〉 and p1 ¬ pos〈1〉< pos〈2〉 and p2 ¬ pos〈1〉> pos〈2〉.

These cases are clearly mutually exclusive, and one is always true. Furthermore, they satisfy the necessary
consistency requirements: |= p1 ∧ e→ (pos〈1〉< T ) and |= p2 ∧ e→ (pos〈2〉< T ) both hold. Finally, the loops are
clearly lossless: the position increases by at least 1 every iteration, so we are in any case for at most T iterations.

With the side-conditions out of the way, we now turn to the main premises. We take the following invariant:

Θ ¬



























|hist〈1〉|> 0∧ |hist〈2〉|> 0

hist〈1〉 ∩ hist〈2〉 6=∅→ pos〈1〉= pos〈2〉
|pos〈1〉 − pos〈2〉| ≤ 10

hd(hist〈1〉) = pos〈1〉 ∧ hd(hist〈2〉) = pos〈2〉
∀t ∈ t l(hist〈2〉), pos〈1〉> t ∧∀t ∈ t l(hist〈1〉), pos〈2〉> t

Reading from the top, the first line states that the history lists are non-empty. The second conjunct says that if the
two processes have visited the same position at some point in the past, then they currently have the same position.
The third conjunct states that the coupled positions are at most 10 apart at all times. The fourth line states that
the current position is the first element in each history list, and the last two conjuncts state that the position in

3The name comes from a magic trick, known as Dynkin’s card trick or Kruskal’s count.
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each process is strictly larger than all the previous positions of the other process; this holds because we always
move the lagging process. (We write t l(hist) for the tail of a list hist, consisting of all but the first element.)

We now prove the three main premises in [WHILE-GEN].

Premise p0

When p0 is true, pos〈1〉= pos〈2〉 and we need to prove

`
§

Θ ∧ e ∧ p0

ª

if pos< T then dynbody
if pos< T then dynbody

§

Θ

ª

É dynkin×0.

Since both guards are true, we use the two-sided rule [COND]. We use [SAMPLE]with f = id (the identity coupling),
and then the usual assignment rule [ASSN]. The invariant is preserved since p0 remains true. So, we have the
desired judgment with product program dynkin×0:

if pos〈1〉< T then
r〈1〉 $← Unif([1, . . . , 10]);
r〈2〉 ← r〈1〉;
pos〈1〉 ← pos〈1〉+ r〈1〉;
pos〈2〉 ← pos〈2〉+ r〈2〉;
hist〈1〉 ← pos〈1〉 :: hist〈1〉;
hist〈2〉 ← pos〈2〉 :: hist〈2〉

Premise p1

When p1 is true, pos〈1〉< pos〈2〉 and we need to prove

`
§

Θ ∧ (pos〈1〉< T )∧ p1

ª

if pos< T then dynbody
skip

§

Θ

ª

É dynkin×1.

Since we are relating a program to skip, we apply the one-sided rules. To show we preserve Θ, note that hist〈1〉 and
hist〈2〉 are both non-empty and hist〈1〉 ∩ hist〈2〉 is initially empty since pos〈1〉< pos〈2〉, so if hist〈1〉 ∩ hist〈2〉 6=∅
after the loop body then we must have pos〈1〉 ∈ hist〈2〉. The next conjunct |pos〈1〉 − pos〈2〉| ≤ 10 also holds, since
(i) it holds initially, (ii) pos〈1〉 < pos〈2〉 initially, and (iii) pos〈1〉 moves forward by at most 10. The conjuncts
involving the head of hist are clear. For the last two conjuncts, hist〈2〉 is unchanged while pos〈1〉 increases, so

∀t ∈ t l(hist〈2〉), pos〈1〉> t

continues to hold. Similarly, if hist〈1〉 is initially q :: ps where q is the initial value of pos〈1〉, then it ends up being
pos〈1〉 :: q :: ps. Since pos〈2〉 is initially greater than all elements in ps and also greater than q since p1 holds, we
continue to have

∀t ∈ t l(hist〈1〉), pos〈2〉> t

after executing the body. So, we have the desired judgment with the following product program dynkin×1:

if pos〈1〉< T then
r〈1〉 $← Unif([1, . . . , 10]);
pos〈1〉 ← pos〈1〉+ r〈1〉;
hist〈1〉 ← pos〈1〉 :: hist〈1〉
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Premise p2

This case is nearly identical to the previous case, using the right-side versions instead of left-side versions of the
rules. By a symmetric argument, we have

`
§

Θ ∧ (p〈2〉< T )∧ p2

ª

skip
if pos< T then dynbody

§

Θ

ª

É dynkin×2

where dynkin×2 is the following product program:

if pos〈2〉< T then
r〈2〉 $← Unif([1, . . . , 10]);
pos〈2〉 ← pos〈2〉+ r〈2〉;
hist〈2〉 ← pos〈2〉 :: hist〈2〉

Putting it all together

Applying [WHILE-GEN], we have the judgment

`
§

start〈1〉, start〈2〉 ∈ [1, . . . , 10]
ª

dynkin
dynkin

§

hist〈1〉 ∩ hist〈2〉 6=∅→ pos〈1〉= pos〈2〉
ª

É dynkin× (3.2)

for the following product program dynkin×:

pos〈1〉 ← start〈1〉; pos〈2〉 ← start〈2〉
hist〈1〉 ← [start〈1〉]; hist〈2〉 ← [start〈2〉];
while (pos〈1〉< T )∨ (pos〈2〉< T ) do

if pos〈1〉= pos〈2〉 then
if pos〈1〉< T then

r〈1〉 $← Unif([1, . . . , 10]);
r〈2〉 ← r〈1〉;
pos〈1〉 ← pos〈1〉+ r〈1〉; pos〈2〉 ← pos〈2〉+ r〈2〉;
hist〈1〉 ← pos〈1〉 :: hist〈1〉; hist〈2〉 ← pos〈2〉 :: hist〈2〉

else if pos〈1〉< pos〈2〉 then
if pos〈1〉< T then

r〈1〉 $← Unif([1, . . . , 10]);
pos〈1〉 ← pos〈1〉+ r〈1〉;
hist〈1〉 ← pos〈1〉 :: hist〈1〉

else
if pos〈2〉< T then

r〈2〉 $← Unif([1, . . . , 10]);
pos〈2〉 ← pos〈2〉+ r〈2〉;
hist〈2〉 ← pos〈2〉 :: hist〈2〉

This program models the informal coupling proof: if the positions are equal, we take equal samples and move
both processes; otherwise, we move the lagging process while holding the leading process fixed. We can analyze
this program to show convergence of two Dynkin processes.

Theorem 3.5.1. Let m1, m2 be two memories such that m1(start), m2(start) ∈ [0,10]. Let µ1,µ2 be the final
distributions over memories:

µ1 ¬ ¹dynkinºm1 and µ2 ¬ ¹dynkinºm2.
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Let η1,η2 be the final distributions over positions:

η1 ¬ ¹posº](µ1) and η2 ¬ ¹posº](µ2).

Then the distance between the two position distributions is at most

dtv (η1,η2)≤ (9/10)bT/10c−1.

Proof. If T ≤ 10, the claim is trivial. Otherwise, let µ× be the coupling in Eq. (3.2) and let η× be the coupling
projected to the two positions:

µ× ¬ ¹dynkin×º(m1, m2) and η× ¬ ¹(pos〈1〉, pos〈2〉)º](µ×).

We directly calculate

Pr
(p1,p2)∼η×

[p1 6= p2] = Pr
(m1,m2)∼µ×

[m1(pos) 6= m2(pos)]

≤ Pr
(m1,m2)∼µ×

[(m1, m2) ∈ ¹hist〈1〉 ∩ hist〈2〉=∅º],

where the inequality follows by the post-condition of Eq. (3.2): pairs of memories where hist〈1〉 ∩ hist〈2〉 is
non-empty do not have different positions.

We turn to the product program to bound the last quantity. If the two process have not met yet, then
hist〈1〉 ∩ hist〈2〉 =∅. Since the processes are at most 10 apart, in each iteration of the loop there is a 9/10 chance
the lagging process misses the leading process, preserving hist〈1〉 ∩ hist〈2〉 = ∅. Since both processes move at
most 10 positions each iteration, there are at least bT/10c − 1 iterations so

Pr
(m1,m2)∼µ×

[(m1, m2) ∈ ¹hist〈1〉 ∩ hist〈2〉=∅º]≤ (9/10)bT/10c−1.

By the coupling method (Theorem 2.1.16), we conclude

dtv (η1,η2)≤ Pr
(p1,p2)∼η×

[p1 6= p2]≤ (9/10)bT/10c−1.

3.6 Path couplings

So far we have used couplings to analyze several Markov chains, iterative processes where the state is a randomized
function of the previous state. The main state space in our examples has been the integers—the position in the
random walk or Dynkin process, or the count of the number of heads in the stochastic domination example. For
more complex state spaces it can be unclear how to couple the samplings to guide the two states towards one
another, especially if the states are many transitions apart.

To address this issue, Bubley and Dyer (1997) proposed the path coupling method, a powerful tool to construct
couplings. Before describing their idea, we first set some definitions.

Definition 3.6.1. Let Ω be a finite set of states. We say a metric d : Ω × Ω → N is a path metric if whenever
d(s, s′) > 1, there exists s′′ 6= s, s′ such that d(s, s′) = d(s, s′′) + d(s′′, s′). We say two states s, s′ are adjacent if
d(s, s′) = 1. The diameter ∆ of the state space is the maximum distance between any two states. A Markov chain
on Ω is defined by iterating a transition function τ : Ω→ Distr(Ω) starting from some initial state.

Then the main theorem of path coupling is as follows.
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Theorem 3.6.2 (Bubley and Dyer (1997)). Consider a Markov chain with transition function τ over a state space Ω
with path metric d and diameter at most ∆. Suppose for any two adjacent states s and s′, there exists a coupling µ of
τ(s),τ(s′) with

E
(r,r ′)∼µ

[d(r, r ′)]≤ β .

Let µ(T )1 ,µ(T )2 be the final distributions from starting in any two states s1, s2 and running T steps of the Markov chain.
Then there is a coupling µ of µ(T )1 ,µ(T )2 with

dtv

�

µ
(T )
1 ,µ(T )2

�

≤ Pr
(r,r ′)∼µ

[r 6= r ′]≤ β T∆.

In particular, the distributions converge in total variation distance exponentially quickly if β < 1.

Intuitively, path coupling can be seen as a transitivity principle for couplings: if we can couple the distributions
after one step from any two adjacent states, then we can extend to a coupling on distributions from any two initial
states. While we are not able to internalize this principle in ×PRHL due to the required bounds on expectations,
we can still construct and analyze the one-step couplings. (We consider how to handle expected distance bounds
and couplings in Chapter 6.) We present two examples from the original paper by Bubley and Dyer (1997).

Glauber dynamics: sampling a proper coloring

The Markov chain in our first example samples approximately uniform graph colorings. It was first analyzed by
Jerrum (1995); we follow the subsequent, simpler analysis by Bubley and Dyer (1997) using path coupling. Recall
that a finite graph G consists of a finite set V of vertices and a symmetric binary relation E relating vertices that are
connected by an edge; we let N G(v) ⊆ V denote the neighbors of a vertex v, i.e., the set of vertices with an edge to
v. We write D for the degree of G, i.e., |N G(v)| ≤ D for all v. We write n¬ |V | for the number of vertices.

Let C be a finite set of colors; we write k ¬ |C | for the number of colors. A coloring of G is a map w : V → C
assigning a color to each vertex; the state space of our Markov chain will be the set of colorings. Let the path
distance d on the state space be the number of vertices colored differently under two colorings; evidently, the
diameter ∆ of this state space is at most the number of vertices n. A coloring is valid (also called proper) if w(v)
and w(v′) have distinct colors for all (v, v′) ∈ E. The following program models T steps of the Glauber dynamics:

i← 0;
while i < T do ;

v $← Unif(V );
c $← Unif(C);
if VG(w, v, c) then w← w[v 7→ c];
i← i + 1

where the guard VG(w, v, c) holds when c is valid at v in w, namely, when there is no neighbor of v colored with c
in w. Informally, the algorithm starts from a coloring w and iteratively modifies it by uniformly sampling a vertex
v and a color c, recoloring v with c if it is locally valid. We focus on the loop body, which encodes the transition
function of the Markov chain:

v $← Unif(V );
c $← Unif(C);
if VG(w, v, c) then w← w[v 7→ c]

We call this program glauber. To apply path coupling (Theorem 3.6.2), we must find a coupling where the expected
distance between coupled states is small when w〈1〉 and w〈2〉 are initially adjacent.
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Theorem 3.6.3. Let m1, m2 be memories with m1(w), m2(w) adjacent colorings. Let µ1,µ2 be the distributions over
memories after running one step of the transition function:

µ1 ¬ ¹glauberºm1 and µ2 ¬ ¹glauberºm2.

Let η1,η2 be the respective distributions over colorings:

η1 ¬ ¹wº](µ1) and η2 ¬ ¹wº](µ2).

Then there is a coupling η× of (η1,η2) with

E
(w1,w2)∼η×

[d(w1, w2)]≤ 1− 1/n+ 2D/kn.

If η(T )1 ,η(T )2 are the distributions over the final colorings after T steps starting from any two colorings, then

dtv

�

η
(T )
1 ,η(T )2

�

≤ (1− 1/n+ 2D/kn)T · n.

Proof. Suppose the initial memories contain adjacent colorings w〈1〉 and w〈2〉. First, we couple the sampling from
Unif(V ) with [SAMPLE], using the identity coupling f = id.

Now notice that the two initial states w〈1〉 and w〈2〉 differ in the color for a single vertex, call it v0. Letting
a ¬ w1(v0) and b ¬ w2(v0), we perform a case analysis on the sampled vertex with [CASE]. If v is a neighbor of
the differing vertex v0, applying [SAMPLE] with the transposition bijection πab : C → C defined by

πab(x)¬







b : x = a
a : x = b
x : otherwise

ensures c〈2〉= πab(c〈1〉). Otherwise, [SAMPLE] with the identity coupling ensures c〈1〉= c〈2〉. By applying the
one-sided rules for conditionals ([COND-L] and [COND-R]) to the left and the right programs, we have

`
§

d(w〈1〉, w〈2〉) = 1
ª

glauber
glauber

§

d(w〈1〉, w〈2〉)≤ 2
ª

É glauber×, (3.3)

where glauber× is the following product program:

v〈1〉 $← Unif(V ); v〈2〉 ← v〈1〉;
if v〈1〉 ∈N G(v0) then

c〈1〉 $← Unif(C); c〈2〉 ← πab(c〈1〉)
else

c〈1〉 $← Unif(C); c〈2〉 ← c〈1〉
if VG(w〈1〉, v〈1〉, c〈1〉) then

w〈1〉 ← w〈1〉[v〈1〉 7→ c〈1〉]
if VG(w〈2〉, v〈2〉, c〈2〉) then

w〈2〉 ← w〈2〉[v〈2〉 7→ c〈2〉]

We analyze this program to bound the expected distance between states under the coupling. Let the coupling on
memories be µ× ¬ ¹glauber×º(m1, m2), and let the coupling on the final colorings be η× ¬ ¹(w〈1〉, w〈2〉)º](µ×).
We have:

E
(w1,w2)∼η×

[d] = 0 · Pr
(w1,w2)∼η×

[d = 0] + 1 · Pr
(w1,w2)∼η×

[d = 1] + 2 · Pr
(w1,w2)∼η×

[d = 2]
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= 1− Pr
(w1,w2)∼η×

[d = 0] + Pr
(w1,w2)∼η×

[d = 2]

≤ 1− Pr
(m1,m2)∼µ×

[m1(v) = v0 ∧ VG(m1(w), v0, m1(c))]

+ Pr
(m1,m2)∼µ×

[m1(v) ∈N G(v0)∧m1(c) = b]

≤ 1−
1
n

�

1−
D
k

�

+
D
nk
= 1−

1
n
+

2D
nk

.

The equalities hold because the distance between the resulting colorings is at most two by the post-condition of
Eq. (3.3), so 1= Pr[d = 0] + Pr[d = 1] + Pr[d = 2]. The first inequality follows since the distance decreases to
zero if we select a valid color at v0, and the distance can only increase to two if we select a neighbor of v0 and pick
the color combination (c〈1〉, c〈2〉) = (b, a). The last step follows since each vertex has at most D neighbors, so
there are at at least k− D valid colors at any vertex; in particular, the distance decreases to zero if we select v0
(probability 1/n) and a valid color (probability at least 1− D/k).

Thus, we have constructed a coupling η× such that

E
(w1,w2)∼η×

[d(w1, w2)]≤ 1− 1/n+ 2D/kn.

By the path coupling theorem (Theorem 3.6.2), we can bound the distance between the T -step distributions
η
(T )
1 ,η(T )2 over w from any two initial colorings:

dtv

�

η
(T )
1 ,η(T )2

�

≤ (1− 1/n+ 2D/kn)T · n.

When the number of colors k is at least 2D+ 1, the right-hand side tends to zero exponentially quickly.

Remark 3.6.4. Theorem 3.6.3 bounds how fast the Glauber dynamics converges, started from any two colorings.
Using basic facts about Markov chains, it is not hard to show that the Glauber dynamics has the uniform distribution
over valid colorings of G as a stationary distribution (a distribution η ∈ Distr(Ω) such that bind(η,τ) = η).4

As a consequence, the Glauber dynamics started in any valid coloring converges exponentially quickly to the
uniform distribution over valid colorings when k ≥ 2D+ 1. To see this, let µ be the distribution on colorings after
T steps started from some valid coloring. Suppose there are M valid colorings on G, and let µ1, . . . ,µM be the
corresponding distributions over colorings after T steps. Since the uniform distribution η is stationary, we have

η=
1
M
·µ1 + · · ·+

1
M
·µM .

For every i, Theorem 3.6.3 gives
dtv (µ,µi)≤ (1− 1/n+ 2D/kn)T · n.

By linearity of TV distance, the output distribution approaches the uniform distribution over valid colorings:

dtv (µ,η)≤ (1− 1/n+ 2D/kn)T · n.

Condensed hard-core lattice gas: sampling an independent set

Our second example is a Markov chain from statistical physics modeling the evolution of a physical system in the
conserved hard-core lattice gas (CHLG) model (Bubley and Dyer, 1997). Suppose we have a finite set P of particles,

4The Glauber dynamics takes any valid coloring to another valid coloring, and the probability of transitioning from w to w′ is equal to the
probability of transitioning from w′ to w, so the Glauber dynamics is reversible over the valid colorings and hence the uniform distribution is
stationary.
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s ¬ |P| in total, and we have a finite graph G = (V, E) with degree at most D. A placement is a map w : P → V
placing each particle at a vertex of the graph. We wish to set the particles so that each vertex has at most one
particle and no two particles are located at adjacent vertices; we call such a placement safe. (In other words, a
safe placement is an independent set.)

We analyze a Markov chain to sample a uniformly random safe placement. Take the state space Ω to be the set
of all placements (not necessarily safe). The Markov chain starts from an initial placement. Each step, it samples a
particle p from P and a vertex v from V uniformly at random, and tries to relocate p to v. If p is safe at v, then
the Markov chain updates the placement; otherwise, it leaves the placement unchanged. We model T steps of this
dynamics with the following program:

i← 0;
while i < T do ;

p $← Unif(P);
v $← Unif(V );
if SG(w, p, v) then w← w[p 7→ v];
i← i + 1

where the guard SG(w, p, v) holds when p is valid at v in w, i.e., when there is no other particle located at v or its
neighbors. We let the path metric d be the number of particles with different locations under two placements;
evidently, the diameter of the state space is at most s. To build a coupling on the one-step distributions from
adjacent initial placements, we analyze the transition function chlg extracted from the loop body:

p $← Unif(P);
v $← Unif(V );
if SG(w, p, v) then w← w[p 7→ v]

Theorem 3.6.5. Let m1, m2 be memories with m1(w), m2(w) adjacent placements. Let µ1,µ2 be the respective
distributions over memories after running one step of the transition function:

µ1 ¬ ¹chlgºm1 and µ2 ¬ ¹chlgºm2.

Let η1,η2 be the respective distributions over placements:

η1 ¬ ¹wº](µ1) and η2 ¬ ¹wº](µ2).

Then there is a coupling η× of (η1,η2) such that

E
(w1,w2)∼η×

[d(w1, w2)]≤ β ¬
�

1−
1
s

��

1+
3(D+ 1)

n

�

.

If η(T )1 ,η(T )2 are the distributions over final placements after T steps starting from any two placements, then

dtv

�

η
(T )
1 ,η(T )2

�

≤ β T · s.

Proof. To couple the two runs we use [SAMPLE] with f = id twice, ensuring p〈1〉= p〈2〉 and v〈1〉= v〈2〉. Then
we apply the one-sided rules for conditionals ([COND-L] and [COND-R]) to the left and the right sides to prove

`
§

d(w〈1〉, w〈2〉) = 1
ª

chlg
chlg

§

d(w〈1〉, w〈2〉)≤ 2
ª

É chlg× (3.4)
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where chlg× is the following product program:

p〈1〉 $← Unif(P);
p〈2〉 ← p〈1〉;
v〈1〉 $← Unif(V );
v〈2〉 ← v〈1〉;
if SG(w〈1〉, p〈1〉, v〈1〉) then

w〈1〉 ← w〈1〉[p〈1〉 7→ v〈1〉]
if SG(w〈2〉, p〈2〉, v〈2〉) then

w〈2〉 ← w〈2〉[p〈2〉 7→ v〈2〉]

Now we bound the expected distance between the final placements. The two initial placements w〈1〉 and w〈2〉
differ in the position of a single particle p0, located at vertex a and b in w〈1〉 and w〈2〉 respectively. Let the
coupling on output distributions be µ× ¬ ¹chlg×º(m1, m2) and let the coupling on placement distributions be
η× ¬ ¹(w〈1〉, w〈2〉)º](µ×). We have:

E
(w1,w2)∼η×

[d]

= 1− Pr
(w1,w2)∼η×

[d = 0] + Pr
(w1,w2)∼η×

[d = 2]

= 1− Pr
(m1,m2)∼µ×

[m1(p) = p0 ∧ SG(m1(w), m1(p), m1(v))]

+ Pr
(m1,m2)∼µ×

[m1(p) 6= p0 ∧ (SG(m1(w), m1(p), m1(v)) 6= SG(m2(w), m2(p), m2(v)))]

≤ 1− Pr
(m1,m2)∼µ×

[m1(p) = p0 ∧ SG(m1(w), m1(p), m1(v))]

+ Pr
(m1,m2)∼µ×

[m1(p) 6= p0 ∧¬(SG(m1(w), m1(p), m1(v))∧ SG(m2(w), m2(p), m2(v)))]

To bound the first probability, the probability of selecting particle p0 is 1/s and the selected particle is safe at v if it
avoids the other s− 1 locations and their neighbors (at most (s− 1)(D+ 1) bad locations). To bound the second
probability, the probability of selecting a particle not equal to p0 is 1− 1/s, and p is safe at v on both sides unless
we select the position a, b, or one of their neighbors (at most 2(D+ 1) bad points). Putting everything together,
we conclude

E
(w1,w2)∼η×

[d(w1, w2)]≤ 1−
1
s

�

1−
(s− 1)(D+ 1)

n

�

+
�

1−
1
s

��

2(D+ 1)
n

�

=
�

1−
1
s

��

1+
3(D+ 1)

n

�

¬ β .

By the path coupling theorem (Theorem 3.6.2), we can bound the distance between the T -step distributions
η
(T )
1 ,η(T )2 over final placements from any two initial placements:

dtv

�

η
(T )
1 ,η(T )2

�

≤ β T · s.

When β < 1, the distributions converge exponentially quickly.

Remark 3.6.6. Like the Glauber dynamics, this Markov chain also has the uniform distribution over safe placements
as a stationary distribution. Theorem 3.6.5 shows the distribution over placements converges exponentially quickly
to this distribution when β < 1, starting from any safe placement.

Bubley and Dyer (1997) actually proved a stronger version of Theorem 3.6.5:

E
(w1,w2)∼η×

[d(w1, w2)]≤
�

1−
1
s

��

1+
2(D+ 1)

n

�

,
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which is sharper than our bound

E
(w1,w2)∼η×

[d(w1, w2)]≤
�

1−
1
s

��

1+
3(D+ 1)

n

�

.

Their analysis used the maximal coupling to couple the state distributions from sampling and updating the
placement, giving a tighter bound on the expected distance.

While it is technically possible to extend ×PRHL with a sampling rule modeling the maximal coupling, with
the corresponding product program drawing correlated samples from the witness distribution, the result would be
somewhat unnatural. First, we would need to describe the witness distribution precisely—the maximal coupling µ
of two distributions µ1,µ2 satisfies the equation

dtv (µ1,µ2) = Pr
(a1,a2)∼µ

[a1 6= a2]

but the probabilities of other events are not specified. In general, there could be multiple possible witnesses to the
maximal coupling, and it is unclear which witness should the canonical choice.

Furthermore, the maximal coupling is defined in terms of the probability of samples being different. This makes
the maximal coupling a poor fit for our logics, which describe the support of the witness via probabilistic lifting.
We would only be able to prove the trivial post-condition after applying the maximal coupling; the properties of
the maximal coupling would then enter as axioms when verifying the coupled product.

3.7 Comparison with existing product programs

Product constructions reduce a relational property of two programs to a non-relational property of a single program,
so that more standard techniques can be brought to bear. We close this chapter by comparing our coupled product
to other existing constructions.

Almost all product constructions were originally designed with non-probabilistic programs in mind, targeting
relational properties like information flow and correctness of compiler transformations. These approaches include
self composition (Barthe, D’Argenio, and Rezk, 2011b), the cross product (Zaks and Pnueli, 2008), type-directed
product programs (Terauchi and Aiken, 2005), and more (Barthe, Crespo, and Kunz, 2011a, 2013a). A basic
consideration is how to handle different control flow in the two programs. If the two programs have the same
shape and always take the same branches, the product program can interleave instructions from the two programs.
If the two programs are very different or if the control flows are not synchronized, an asynchronous construction
can combine the two programs sequentially.

These approaches have different strengths and weaknesses. By placing corresponding instructions close to one
another, synchronized constructions can better leverage similarity between programs and can often be verified
with simpler invariants and more local reasoning. However, asynchronous products apply to a wider range of
programs. The design of ×PRHL, and in particular the asynchronous rule [WHILE-GEN], allows product programs
that are both synchronous and asynchronous.

Probabilistic programs introduce additional challenges for product constructions. Existing constructions can be
blindly applied to randomized programs, but the results use two independent sources of randomness, and are
difficult to reason about—there is no coordination between the two programs on sampling instructions, whether
the construction has a synchronous structure or not. A notable exception is the product construction by Barthe,
Gaboardi, Gallego Arias, Hsu, Kunz, and Strub (2014b), which is specialized to proving differential privacy.
Their construction eliminates the random sampling statements entirely, yielding a synchronized, non-probabilistic
product. In fact, their product is based on a variant of probabilistic couplings called approximate liftings; we turn
to these couplings in the rest of the thesis.



Chapter 4

Approximate couplings for differential privacy

The first half of this thesis connected proofs by coupling with the logic PRHL, using ideas from the former to enhance
the latter. We now explore a similar connection in reverse, using concepts from program logics to develop a novel
form of probabilistic coupling and a new proof technique. Our starting point is APRHL, an approximate version of
PRHL proposed by Barthe et al. (2013c) for verifying differential privacy, a statistical notion of data privacy. This
logic was originally based on an approximate version of probabilistic lifting. By interpreting approximate liftings
as a generalization of probabilistic coupling and reverse-engineering an approximate version of proof by coupling
from APRHL, we can give a powerful method to prove differential privacy.

After briefly reviewing differential privacy (Section 4.1), we propose a new definition of approximate lifting
and explore its theoretical properties (Section 4.2); our approximate liftings are a natural, approximate version
of probabilistic couplings. To build approximate couplings, we review a core version APRHL (Section 4.3) and
extract a proof technique inspired by the logic, called proof by approximate coupling (Section 4.4). We then
extend APRHL with proof rules modeling new approximate couplings (Section 4.5) and a principle called pointwise
equality for proving differential privacy (Section 4.6). As applications, we give new proofs of privacy for the
Report-noisy-max and Sparse Vector mechanisms (Section 4.7). Our approximate coupling proofs are significantly
cleaner than existing arguments, and can be formalized in APRHL, enabling the first formal privacy proofs for these
mechanisms. Finally, we survey other verification techniques for differential privacy, and research on approximate
liftings (Section 4.8).

4.1 Differential privacy preliminaries

Differential privacy, proposed by Dwork, McSherry, Nissim, and Smith (2006), is a strong, probabilistic notion of
data privacy that has attracted intensive attention across computer science and beyond. Differential privacy is a
relational property of probabilistic programs.

Definition 4.1.1. Let ε,δ be non-negative parameters. Consider a set D with a binary adjacency relation Adj; we
sometimes call D the set of databases. Let the range R be a set of possible outputs. A function M : D→ Distr(R)—
often called a mechanism—is (ε,δ)-differentially private if for all pairs of adjacent inputs (d, d ′) ∈ Adj and all
subsets S ⊆R of outputs, we have

M(d)(S)≤ exp(ε) ·M(d ′)(S) +δ.

When δ = 0, we say M is ε-differentially private.

The adjacency relation describes which pairs of databases should lead to approximately indistinguishable
outputs—intuitively, which pairs of databases differ only in the data of a single person. For instance, if a database
is a set of records belonging to different people, we can consider two databases to be adjacent if they are identical
except for an additional individual’s record in one database. Then under differential privacy, a mechanism’s output

44
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must be nearly the same whether any single individual’s private data is part of the input or not. The degree of
similarity—and the strength of the privacy guarantee—are governed by the parameters ε and δ: smaller values
give stronger guarantees, while larger values give weaker guarantees.

While typical notions of adjacency are symmetric, much of the theory of differential privacy applies to arbitrary
relations. However, there are a few notable results that crucially need a symmetric adjacency relation—we will
highlight these cases as they arise.

Standard private mechanisms

The most basic example of a differentially private mechanism is the Laplace mechanism, which evaluates a numeric
query on a database and adds random noise drawn from the Laplace distribution. For instance, the target query
could compute the average age, or count the number of patients with a certain disease. While the Laplace
distribution is a continuous distribution over the real numbers, we work with a discrete version to avoid measure-
theoretic technicalities. For concreteness we take the samples to be integers; our results can be easily adapted to
finer discretizations.1

Definition 4.1.2. Let ε > 0. The (discrete) Laplace distribution with parameter ε, written Lapε, is the distribution
over the integers where v ∈ Z has probability proportional to exp(−|v| · ε):

Lapε(v)¬
exp(−|v| · ε)

W
,

with W ¬
∑

z∈Z exp(−|z| · ε). We write Lapε(t) for the Laplace distribution with mean t ∈ Z; sampling from this
distribution is equivalent to sampling from Lapε and adding t.

Let q : D→ Z be an integer-valued query. The Laplace mechanism with parameter ε takes a database d ∈ D as
input and returns a sample from Lapε(q(d)). This mechanism is also known as the ε-geometric mechanism (Ghosh,
Roughgarden, and Sundararajan, 2012).

If the query takes similar values on adjacent databases, the Laplace mechanism is differentially private. The
privacy parameters depend on the sensitivity of the query—the more the answers may differ on adjacent databases,
the weaker the privacy guarantee.

Theorem 4.1.3 (Dwork et al. (2006)). A query q : D→ Z is k-sensitive if |q(d)−q(d ′)| ≤ k for every pair of adjacent
databases. Releasing a k-sensitive query with the Laplace mechanism with parameter ε is (k ·ε, 0)-differentially private.

Composition theorems

Differential privacy is closed under several notions of composition, making it easy to build new private algorithms
out of private components. The sequential, or standard composition theorem is the most basic example. When
running two private computations in sequence—where the second computation may use the input database as
well as the randomized output from the first computation—the privacy guarantee should weaken, since we run
more analyses on the data. Indeed, the privacy parameters simply add up.

Theorem 4.1.4 (Dwork et al. (2006)). Let M : D→ Distr(R) be (ε,δ)-differentially private and let M ′ : R×D→
Distr(R) be such that M ′(r,−) : D→ Distr(R) is (ε′,δ′)-differentially private for every r ∈ R. Given a database
d ∈ D, sampling r from M(d) and then returning a sample from M ′(r, d) is (ε + ε′,δ+δ′)-differentially private.

This useful theorem has two immediate consequences. First, if M ′ depends only on its first argument r and
ignores its database argument d, then M ′(r,−) is (0,0)-differentially private. So, transforming the output of a
differentially-private algorithm does not degrade privacy; this property is also called closure under post-processing.

1More precisely, any discretization closed under addition.
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Second, by repeatedly applying the composition theorem, the composition of n separate (ε,δ)-differentially
private mechanisms is (nε, nδ)-differentially private. In certain parameter ranges, an alternative, advanced
composition theorem can bound the privacy level with a smaller ε at the cost of a slightly larger δ. This result
crucially assumes a symmetric adjacency relation.

Theorem 4.1.5 (Dwork, Rothblum, and Vadhan (2010)). Fix a symmetric adjacency relation on D. Let fi : R×D→
Distr(R) be a sequence of n functions such that for every r ∈ R, the functions fi(r,−) : D → Distr(R) are (ε,δ)-
differentially private. Then for every ω ∈ (0,1), the mechanism that executes f1, . . . , fn in sequence and returns the
final output is (ε∗,δ∗)-differentially private for

ε∗ = ε
Æ

2n ln(1/ω) + nε(eε − 1) and δ∗ = nδ+ω.

In particular, if we have ε′ ∈ (0, 1), ω ∈ (0, 1/2), and

ε =
ε′

2
p

2n ln(1/ω)
,

a short calculation2 shows that the composition is (ε′,δ∗)-differentially private.

We omit other standard composition theorems (e.g., parallel composition) as we will not need them; readers
can consult the textbook by Dwork and Roth (2014) for more information.

Remark 4.1.6. The sequential composition theorem allows reasoning about differential privacy in terms of privacy
costs. We can imagine tracking an algorithm’s privacy parameters, initially (0, 0). Every time the algorithm applies
an (ε,δ)-private mechanism, we increment the current parameters by (ε,δ); the final parameters give the privacy
level for the whole algorithm. In this way, (ε,δ) represents the cost of using a private subroutine.

While this observation seems to be a restatement of the composition theorems, merely a convenient accounting
method, the subtlety lies in how the costs are computed. The key point is that outputs from previous private
mechanisms are assumed to be equal when computing the cost of subsequent operations. Changing the perspective
a bit, we can pay cost (ε,δ) to assume two outputs in related runs of an (ε,δ)-private mechanism are equal. We
can begin to see the rough contours of a proof by coupling; we will soon make this idea more precise.

4.2 Approximate liftings

Differential privacy is closely related to an approximate version of probabilistic lifting first proposed by Barthe
et al. (2013c) and refined in later work (Barthe and Olmedo, 2013; Olmedo, 2014). These liftings are defined in
terms of a distance on distributions.

2 Note eε − 1≤ 2ε for ε ∈ (0,1) by convexity of eε − 2ε − 1. Then
Æ

2n ln(1/ω)ε + nε(eε − 1)≤
Æ

2n ln(1/ω)ε + 2nε2

=
ε′

2
+
ε′

2
·

ε′

2 ln(1/ω)

≤
ε′

2
+
ε′

2
= ε′,

where the last inequality is because ω ∈ (0,1/2) and ε′ ∈ (0,1), and the last factor is maximized at ε′ = 1 and ω= 1/2:

ε′

2 ln(1/ω)
≤

1
2 ln(2)

< 1.
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Definition 4.2.1. Let µ1,µ2 be sub-distributions over A. The ε-distance is defined as

dε (µ1,µ2)¬max
S⊆A
(µ1(S)− exp(ε) ·µ2(S)).

This quantity is non-negative since the right-hand side is zero for the empty subset S =∅, but it is not a proper
metric—it is not symmetric and the triangle inequality does not hold.3 If M : D→ Distr(R) is a mechanism with
dε (M(d1), M(d2))≤ δ for every pair of adjacent d1, d2, then M is (ε,δ)-differentially private.

We are now ready to define approximate liftings.

Definition 4.2.2. Let µ1,µ2 be sub-distributions over A1 and A2 respectively and let R ⊆A1 ×A2 be a relation.
Let ? be a distinguished element disjoint from A1 and A2; we write S? for the set S ∪ {?}, and R? for the relation
R∪ (A1 ×{?})∪ ({?}×A2) on A?1 ×A?2. Two sub-distributions µL ,µR over A?1 ×A?2 are said to be witnesses for the
(ε,δ)-approximate R-lifting of (µ1,µ2) if:

1. π1(µL) = µ1 and π2(µR) = µ2;

2. supp(µL)∪ supp(µR) ⊆R?; and

3. dε (µL ,µR)≤ δ.

In the first point µ1 and µ2 are implicitly interpreted as distributions over A?1 and A?2 (i.e., placing zero probability
on ?). We call these conditions the marginal, support, and distance conditions, respectively.

The sub-distributions µL and µR are called left and right witnesses of the lifting. When the particular witnesses
are not important, µ1 and µ2 are said to be related by the (ε,δ)-lifting of R, denoted

µ1 R](ε,δ) µ2.

Our definition generalizes an earlier definition of approximate lifting by Barthe and Olmedo (2013). The chief
novelty is the element ?, which ensures each element in A1 and A2 can be related to some element under R
(namely, ?). Somewhat paradoxically, the larger space of witnesses lets us assume more structure on the witness
distributions without loss of generality, making it easier to manipulate and construct approximate liftings.

Useful consequences

The existence of an approximate lifting between two distributions can imply useful properties about the two
distributions. Many of these consequences recall properties from Section 2.1, with quantitative corrections for the
parameters (ε,δ).

Proposition 4.2.3. Let M : D→ Distr(R) be a randomized algorithm. If for every pair of adjacent inputs (d1, d2)
the output distributions are related by an approximate lifting

M(d1) (=)
](ε,δ) M(d2),

then M is (ε,δ)-differentially private.

Proof. Fix a pair of adjacent inputs (d1, d2), and let µL ,µR be the witnesses to the approximate lifting of the output
distributions. For any subset S ⊆R of outputs, we have

M(d1)(S) = µL(S ×R?) (first marginal)

= µL({(s, s) | s ∈ S} ∪ S × {?}) (support)

3Technically, ε-distance is an f -divergence with f (t) =max(t − exp(ε), 0)
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≤ exp(ε) ·µR({(s, s) | s ∈ S} ∪ S × {?}) +δ (distance)

≤ exp(ε) ·µR(R? × S?) +δ (support)

= exp(ε) ·M(d2)(S) +δ. (second marginal)

Thus M is (ε,δ)-differentially private.

The approximate lifted version of implication is also useful.

Proposition 4.2.4. Let µ1,µ2 be sub-distributions over A1 and A2, and consider subsets S1 ⊆A1, S2 ⊆A2. Suppose
we have an approximate lifting

µ1 {(a1, a2) | a1 ∈ S1→ a2 ∈ S2}
](ε,δ) µ2.

Then µ1(S1)≤ exp(ε) ·µ2(S2) +δ.

Proof. Let µL ,µR witness the approximate lifting. Then,

µ1(S1) = µL(S1 ×R?) (first marginal)

= µL(S1 × S2 ∪ S1 × {?}) (support)

≤ exp(ε) ·µR(S1 × S2 ∪ S1 × {?}) +δ (distance)

≤ exp(ε) ·µR(R? × S?2) +δ (support)

= exp(ε) ·µ2(S2) +δ (second marginal)

as desired.

We will see a partial converse in the next chapter (Theorem 5.3.1).

Structural properties

Approximate liftings satisfy several natural structural properties. First of all, they generalize exact liftings.

Proposition 4.2.5. Let µ1,µ2 be sub-distributions over A1 and A2 with equal weights. We have the equivalence

µ1 R] µ2 if and only if µ1 R](0,0) µ2.

Proof. The forward direction follows by taking both witnesses of the approximate lifting to be the witness of
the exact lifting. For the reverse direction, let µL ,µR witness the approximate lifting. We have d0 (µL ,µR) ≤ 0
so µL(a1, a2) ≤ µR(a1, a2) for every pair (a1, a2) ∈ A1 ×A2. Since µ1 and µ2 have equal weights, the marginal
conditions imply |µL |= |µR| and hence µL = µR. Since µL({?} ×A2) = µR(A1 × {?}) = 0, restricting to A1 ×A2
gives a witness for the exact lifting as desired.

Second, we may assume witnesses only use pairs in the product of the supports of the two related distributions.

Proposition 4.2.6. Let µ1 and µ2 be sub-distributions over A1 and A2 with an approximate lifting

µ1 R](ε,δ) µ2.

Then there are witnesses with support contained in supp(µ1)? × supp(µ2)?.

This property is natural—µ1 and µ2 are fully defined by their probabilities on supporting elements, so the
witnesses shouldn’t need to use other elements. However, witnesses to an approximate lifting may have positive
mass on points (a1, a2) /∈ supp(µ1)× supp(µ2) since the marginal conditions only constrain one marginal of µL
and µR; mass can be distributed arbitrarily along the unconstrained component. In fact, this support property
does not hold for prior definitions of approximate lifting. In our definition, the ? element serves as a canonical
element where mass outside of supp(µ1)× supp(µ2) can be located.
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Proof. Let µL and µR witness the approximate lifting and let Si ¬ supp(µi) for i ∈ {1, 2}. We construct witnesses
ηL ,ηR by shifting mass on points outside the support to ?, while preserving the marginals:

ηL(a1, a2)¬











µL(a1, a2) : (a1, a2) ∈ S1 × S2
∑

a′2∈A
?
2\S2

µL(a1, a′2) : a2 = ?

0 : otherwise

ηR(a1, a2)¬











µR(a1, a2) : (a1, a2) ∈ S1 × S2
∑

a′1∈A
?
1\S1

µR(a′1, a2) : a1 = ?

0 : otherwise

It is straightforward to check π1(ηL) = π1(µL) = µ1 and π2(ηR) = π2(µR) = µ2, and ηL ,ηR have the necessary
supports. It only remains to check the distance condition. By the distance condition on µL and µR, there are
non-negative constants δ(a1, a2) such that

µL(a1, a2)≤ exp(ε) ·µR(a1, a2) +δ(a1, a2)

for each (a1, a2) ∈A?1 ×A?2, with sum at most δ. We define new constants

δ′(a1, a2)¬











δ(a1, a2) : (a1, a2) ∈ S1 × S2
∑

a′2∈A
?
2\S2

δ(a1, a′2) : a2 = ?

0 : otherwise

and we claim
ηL(a1, a2)≤ exp(ε) ·ηR(a1, a2) +δ

′(a1, a2).

This is clear on S1 × S2 and also when a1 = ?, since ηL(?, a2) = 0. When a2 = ?, unfolding definitions gives

ηL(a1,?) =
∑

a′2∈A
?
2\S2

µL(a1, a′2)

≤
∑

a′2∈A
?
2\S2

exp(ε) ·µR(a1, a′2) +δ(a1, a′2)

=
∑

a′2∈A
?
2\S2

δ(a1, a′2)

= exp(ε) ·ηR(a1,?) +δ′(a1,?)

where the penultimate equality is because µR(a1, a′2) = 0 for a′2 /∈ S2, and the last equality is because ηR(a1,?) = 0
by definition. Finally,

∑

(a1,a2)∈A?
1×A

?
2

δ′(a1, a2) =
∑

(a1,a2)∈A1×A?
2

δ(a1, a2)≤ δ

so the distance condition dε (ηL ,ηR)≤ δ holds. Thus ηL and ηR witness the approximate lifting.

Approximate liftings are also stable under mappings.

Theorem 4.2.7. Let µ1 and µ2 be sub-distributions over A1 and A2. If we have functions fi : Ai → Bi for i ∈ {1, 2},
and a relation R ⊆ B1 ×B2, then

µ1 {(a1, a2) ∈A1 ×A2 | f1(a1)R f2(a2)}
](ε,δ) µ2
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if and only if
f ]1 (µ1) {(b1, b2) ∈ B1 ×B2 | b1 R b2}

](ε,δ) f ]2 (µ2).

(Recall f : A→ B can be lifted to a map f ] : SDistr(A)→ SDistr(B) on sub-distributions.)

This theorem roughly says that we can change the basis of an approximate lifting; namely, the ground sets of
µ1 and µ2 and the ambient space of the relation. Several useful consequences follow. First, if we take f1 and f2 to
inject from supp(µ1) and supp(µ2) into B1 and B2, the reverse direction recovers Proposition 4.2.6. Second, if E is
a set of equivalence classes of A and µ/E ∈ SDistr(E) is the induced distribution over equivalence classes, taking
f1, f2 : A→ E to map an element to its equivalence class and R to be the equivalence relation =E recovers a result
by Barthe and Olmedo (2013, Proposition 8):

µ1 (=E)
](ε,δ) µ2 ⇐⇒ µ1/E (=)

](ε,δ) µ2/E .

We frequently apply Theorem 4.2.7 with f1 and f2 projecting a memory to the value in variables x1 and x2; by the
reverse direction, we can extend a lifting of the distributions over x1 and x2 to a lifting of distributions over whole
memories.

Proof. For the forward direction, take witnesses µL ,µR ∈ SDistr(A?1 ×A?2) and define witnesses for the desired
approximate lifting ηL ¬ ( f ?1 × f ?2 )

](µL) and ηR ¬ ( f ?1 × f ?2 )
](µR), where f ?1 × f ?2 maps (a1, a2) 7→ ( f1(a1), f2(a2))

and maps ? to ? in both components. The support condition is clear, the marginal requirement is clear, and the
distance requirement follows easily: for any set S ⊆ B?1 ×B?2, apply the distance condition on µL ,µR for the set
( f ?1 × f ?2 )

−1(S).
For the reverse direction, let ηL ,ηR ∈ SDistr(B?1 × B?2) witness the second approximate lifting. By Proposi-

tion 4.2.6, without loss of generality supp(ηL) and supp(ηR) are contained in

supp( f ]1 (µ1))
? × supp( f ]2 (µ2))

? ⊆ f1(A1)
? × f2(A2)

?. (4.1)

We construct a pair of witnesses µL ,µR ∈ SDistr(A?1 ×A?2) to the first approximate lifting. The basic idea is to
define µL and µR based on equivalence classes of elements in Ai mapping to each bi ∈ Bi , smoothing out the
probabilities within each class to guarantee the distance condition. To begin, for ai ∈Ai and i ∈ {1, 2} we define

[ai] fi
¬ f −1

i ( fi(ai)) and αi(ai)¬
µi(ai)
µi([ai] fi

)
.

We take αi(ai) = 0 when µi([ai] fi
) = 0, and we let αi(?) = 0. We define µL and µR as

µL(a1, a2)¬ αL(a1, a2) ·ηL( f
?

1 (a1), f ?2 (a2))
µR(a1, a2)¬ αR(a1, a2) ·ηR( f

?
1 (a1), f ?2 (a2)),

where

αL(a1, a2)¬

¨

α1(a1) ·α2(a2) : a2 6= ?
α1(a1) : a2 = ?

and αR(a1, a2)¬

¨

α1(a1) ·α2(a2) : a1 6= ?
α2(a2) : a1 = ?.

The support and marginal conditions follow from the corresponding properties of ηL , ηR, e.g.,

π1(µL)(a1) =
∑

a2∈A?
2

αL(a1, a2) ·ηL( f
?

1 (a1), f ?2 (a2))

= α1(a1) ·ηL( f
?

1 (a1),?) +
∑

a2∈A2

α1(a1) ·α2(a2) ·ηL( f1(a1), f2(a2))
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= α1(a1)



ηL( f
?

1 (a1),?) +
∑

b2∈ f2(A2)

ηL( f
?

1 (a1), b2)
∑

a2∈ f −1
2 (b2)

α2(a2)





= α1(a1)

 

ηL( f
?

1 (a1),?) +
∑

b2∈ f2(A2)

ηL( f1(a1), b2)

!

= α1(a1)
∑

b2∈B?2

ηL( f
?

1 (a1), b2) = α1(a1) ·µ1([a1] f1) = µ1(a1).

The last equality replaces the sum over b2 ∈ f2(A2)? with a sum over b2 ∈ B?2; this holds since the support of

f ]2 (µ2) is contained in f2(A2) so we may assume ηL( f1(a1), b2) = 0 for all b2 outside of f2(A2)? by Eq. (4.1). Then
we conclude by the marginal condition π1(ηL) = f ]1 (µ1). The second marginal is similar.

To check the distance condition dε (µL ,µR)≤ δ, since dε (ηL ,ηR)≤ δ there exists non-negative δ(b1, b2) with

ηL(b1, b2)≤ exp(ε) ·ηR(b1, b2) +δ(b1, b2)

and
∑

b1,b2
δ(b1, b2)≤ δ. We may take δ(?, b2) = 0 for all b2 ∈ B2, since ηL(?, b2) = 0 by the marginal condition.

We claim that for any (a1, a2) ∈A?1 ×A?2, we have µL(a1, a2)≤ exp(ε) ·µR(a1, a2) + ζ(a1, a2) where

ζ(a1, a2)¬ αL(a1, a2) ·δ( f ?1 (a1), f ?2 (a2)).

Let bi ¬ f ?i (ai) and consider (a1, a2) ∈A?1 ×A?2. If a1 = ? we can immediately bound

µL(?, a2) = 0≤ exp(ε) ·µR(?, a2) + ζ(?, a2).

Otherwise a1 6= ? and we can bound

µL(a1, a2) = αL(a1, a2) ·ηL( f
?

1 (a1), f ?2 (a2))
≤ αL(a1, a2) · (exp(ε) ·ηR( f

?
1 (a1), f ?2 (a2)) +δ( f

?
1 (a1), f ?2 (a2)))

= exp(ε) · (αR(a1, a2) ·ηR( f
?

1 (a1), f ?2 (a2))) +αL(a1, a2) ·δ( f ?1 (a1), f ?2 (a2))
= exp(ε) ·µR(a1, a2) +αL(a1, a2) ·δ( f ?1 (a1), f ?2 (a2))
= exp(ε) ·µR(a1, a2) + ζ(a1, a2).

The third line changes from αL to αR in the first term since αL(a1, a2) 6= αR(a1, a2) exactly when a2 = ?, when
ηR( f ?1 (a1), f ?2 (a2)) = ηR( f ?1 (a1),?) = 0 as well.

Now we just need to bound the sum of ζ(a1, a2) to conclude the distance bound between ηL and ηR. First, the
sum of αL within any equivalence class is 1: for any (b1, b2) ∈ B1 ×B2, we have

∑

a1∈ f −1
1 (b1)

∑

a2∈ f −1
2 (b2)

αL(a1, a2) =





∑

a1∈ f −1
1 (b1)

α1(a1)









∑

a2∈ f −1
2 (b2)

α2(a2)



= 1

by definition. Therefore,
∑

(a1,a2)∈A?
1×A

?
2

ζ(a1, a2) =
∑

(b1,b2)∈B?1×B
?
2

δ(b1, b2)
∑

a1∈ f −1
1 (b1)

∑

a2∈ f −1
2 (b2)

αL(a1, a2)

=
∑

(b1,b2)∈B1×B2

δ(b1, b2) +
∑

b1∈B1

δ(b1,?)
∑

a1∈ f −1
1 (b1)

α1(a1)
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=
∑

(b1,b2)∈B1×B2

δ(b1, b2) +
∑

b1∈B1

δ(b1,?)

=
∑

(b1,b2)∈B?1×B
?
2

δ(b1, b2)≤ δ.

So for any S ⊆A?1 ×A?2 we have µL(S)≤ exp(ε) ·µR(S) +δ, showing dε (µL ,µR)≤ δ as desired.

From approximate liftings to approximate couplings

Approximate liftings generalize probabilistic liftings (Proposition 4.2.5) while retaining many features of their
exact counterparts: the existence of an approximate lifting with a certain support implies target properties about
the two related distributions (Propositions 4.2.3 and 4.2.4), and the structural properties we saw for approximate
liftings (Proposition 4.2.6 and Theorem 4.2.7) also hold for probabilistic liftings. Accordingly, we can think of
approximate liftings as an approximate generalization of probabilistic coupling; we will use the term approximate
coupling to emphasize this point of view.

Unlike probabilistic coupling, whose definition and key properties have been refined through decades of research,
the proper definition of approximate coupling is not settled. Other definitions have been proposed, and the relation
between the various notions is somewhat hazy. (See Section 5.6 for a more detailed comparison.) Nevertheless, we
present evidence that our approximate lifting is the natural approximate counterpart of probabilistic coupling—or
at least, a highly promising candidate—by showing many desirable properties hold and by exhibiting clean
constructions.

However, so far we are still missing a major piece of the puzzle: how do we construct approximate couplings?
In other words, what is the approximate analogue of proof by coupling? To work out what such a proof technique
might look like, we take inspiration from an existing program logic for approximate liftings.

4.3 The program logic APRHL

Barthe et al. (2013c) proposed the relational program logic APRHL as an approximate version of PRHL, targeting
differential privacy. The basic idea is to use approximate liftings in place of exact liftings, tracking the parameters
(ε,δ) in the judgments. We briefly review the language, the judgments, and the logical rules.

The language

The language of APRHL is almost identical to the probabilistic imperative language we used for PRHL. The only
difference is instead of the uniform distribution, we take the Laplace distribution as primitive:

DE := Lapε(e).

The parameter ε quantifies the spread of the distribution, while the parameter e represents its mean; we treat ε as
a logical variable. Similar to how we defined the Laplace mechanism (Definition 4.1.2), we interpret Lapε(e) as a
discrete distribution over the integers z ∈ Z:

(¹Lapε(e)ºρm)(z)¬
exp(−¹εºρ · |z − ¹eºρm|)

W
where ¹eºρm is an integer and W normalizes the distribution to have weight 1:

W ¬
∑

z∈Z
exp(−¹εºρ · |z − ¹eºρm|).

For example, the Laplace mechanism for a query q : D→ Z can be implemented by sampling:

x $← Lapε(q(d)).
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SKIP
` skip∼(0,0) skip : Φ=⇒ Φ

ASSN
` x1← e1 ∼(0,0) x2← e2 : Ψ {e1〈1〉, e2〈2〉/x1〈1〉, x2〈2〉}=⇒ Ψ

LAP
x1, x2 /∈ FV(e1, e2) Φ¬ |e1〈1〉 − e2〈2〉| ≤ k ∧∀v ∈ Z, Ψ {v, v/x1〈1〉, x2〈2〉}

` x1
$← Lapε(e1)∼(kε,0) x2

$← Lapε(e2) : Φ=⇒ Ψ

SEQ
` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ ` c′1 ∼(ε′,δ′) c′2 : Ψ =⇒ Θ

` c1; c′1 ∼(ε+ε′,δ+δ′) c2; c′2 : Φ=⇒ Θ

COND
|= Φ→ e1〈1〉= e2〈2〉 ` c1 ∼(ε,δ) c2 : Φ∧ e1〈1〉=⇒ Ψ ` c′1 ∼(ε,δ) c′2 : Φ∧¬e1〈1〉=⇒ Ψ

` if e1 then c1 else c′1 ∼(ε,δ) if e2 then c2 else c′2 : Φ=⇒ Ψ

WHILE

|= Φ∧ ev〈1〉 ≤ 0→¬e1〈1〉 |= Φ→ e〈1〉= e〈2〉
∀K ∈ N, ` c1 ∼(ε,δ) c2 : Φ∧ e1〈1〉 ∧ ev〈1〉= K =⇒ Φ∧ ev〈1〉< K

`while e1 do c1 ∼(Nε,Nδ) while e2 do c2 : Φ∧ e〈1〉 ≤ N =⇒ Φ∧¬e1〈1〉

Figure 4.1: Two-sided APRHL rules

Judgments and validity

Judgments in APRHL have the following form:

c1 ∼(ε,δ) c2 : Φ=⇒ Ψ

Just like in PRHL, Φ and Ψ are assertions on a product memory and refer to variables tagged with 〈1〉 and 〈2〉.
The parameters ε,δ are expressions involving constants and logical variables; in particular, they do not mention
program variables and do not depend on the program state.

Validity for APRHL judgments is defined in terms of approximate liftings.

Definition 4.3.1. An APRHL judgment is valid in logical context ρ, written

ρ |= c1 ∼(ε,δ) c2 : Φ=⇒ Ψ,

if for any two memories (m1, m2) ∈ ¹Φºρ there exists an approximate lifting relating the output distributions:

¹c1ºρm1 ¹Ψºρ
](¹εºρ ,¹δºρ)

¹c2ºρm2.

Core proof rules

Most of the rules in APRHL generalize rules from PRHL, with special handling for the (ε,δ) parameters. We present
the core proof system and comment on departures from PRHL.
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We begin with the two-sided rules in Fig. 4.1. The [SKIP] and [ASSN] rules are lifted from PRHL. To gain
intuition for the sampling rule [LAP], we first consider a special case:

LAP*
` x $← Lapε(e)∼(kε,0) x $← Lapε(e) : |e〈1〉 − e〈2〉| ≤ k =⇒ x〈1〉= x〈2〉

Since the means e〈1〉 and e〈2〉 may not be equal, the two distributions may have different probabilities of sampling
the same value and there may be no exact coupling guaranteeing x〈1〉 = x〈2〉. Nevertheless, there is a (kε, 0)-
approximate coupling when the means differ by at most k. Since approximate lifting of equality models differential
privacy, this rule captures privacy of the Laplace mechanism (Theorem 4.1.3). The full sampling rule [LAP] proves
a general post-condition Ψ if it is true as a pre-condition, assuming the two sampled variables are equal.

The sequencing rule [SEQ] is similar to the sequencing rule in PRHL, summing up the approximation parameters.
This rule reflects a composition principle for approximate couplings generalizing the sequential composition
theorem from differential privacy (Theorem 4.1.4).

The conditional rule [COND] is similar to its counterpart from PRHL. Assuming the guards are equal initially, if
there is an (ε,δ)-coupling of corresponding pairs of branches then there is an (ε,δ)-coupling of the two conditionals.
Finally, the loop rule [WHILE] applies to loops that run at most a finite number of iterations N ; this is enforced
by the strictly decreasing integer variant ev . Given an (ε,δ)-coupling for the loop bodies, the rule produces
a (Nε, Nδ)-coupling of the two loops. Again, this rule corresponds to a sequential composition principle for
approximate couplings.

The one-sided rules for APRHL are presented in Fig. 4.2; the structural rules, in Fig. 4.3. The one-sided
sampling rules, [LAP-L] and [LAP-R], give a (0, 0)-lifting. The rule of consequence [CONSEQ] allows increasing the
approximate parameters since larger parameters require a looser bound between the witnesses. The other rules
are straightforward generalizations of their PRHL counterparts.

As expected, the logic is sound.

Theorem 4.3.2 (Soundness of APRHL). Let ρ be a logical context. If a judgment is derivable

ρ ` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ,

then it is valid:
ρ |= c1 ∼(ε,δ) c2 : Φ=⇒ Ψ.

Proof sketch. By induction on the derivation. The proof is very similar to the proof of soundness for APRHL by
Olmedo (2014), with some minor adjustments to handle the special element ? in our definition of approximate
coupling. Appendix B gives a self-contained proof of soundness for the full logic, including the new rules we will
soon introduce.

The natural counterpart to soundness is completeness: valid judgments should be provable by the proof system.
APRHL is incomplete in at least one respect: while valid judgments may relate commands that do not always
terminate, derivable judgments can only relate lossless programs.

Lemma 4.3.3. If ρ ` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ is derivable, then c1 and c2 are both Φ-lossless.

Proof. By induction on the derivation. Since the loop rule [WHILE] requires both loops to terminate in at most n
iterations and the one-sided variants [WHILE-L]/[WHILE-R] assume losslessness, c1 and c2 must be lossless under
the pre-condition.

This kind of incompleteness aside, it is not known whether APRHL is complete for terminating programs (or
even relatively complete in some natural sense); we discuss this issue further in Chapter 6.



CHAPTER 4. APPROXIMATE COUPLINGS FOR DIFFERENTIAL PRIVACY 55

ASSN-L
` x1← e1 ∼(0,0) skip : Ψ {e1〈1〉/x1〈1〉}=⇒ Ψ

ASSN-R
` skip∼(0,0) x2← e2 : Ψ {e2〈2〉/x2〈2〉}=⇒ Ψ

LAP-L
` x1

$← Lapε(e1)∼(0,0) skip : ∀v ∈ Z, Ψ {v/x1〈1〉}=⇒ Ψ

LAP-R
` skip∼(0,0) x2

$← Lapε(e2) : ∀v ∈ Z, Ψ {v/x2〈2〉}=⇒ Ψ

COND-L
` c1 ∼(ε,δ) c : Φ∧ e1〈1〉=⇒ Ψ ` c′1 ∼(ε,δ) c : Φ∧¬e1〈1〉=⇒ Ψ

` if e1 then c1 else c′1 ∼(ε,δ) c : Φ=⇒ Ψ

COND-R
` c ∼(ε,δ) c2 : Φ∧ e2〈2〉=⇒ Ψ ` c ∼(ε,δ) c′2 : Φ∧¬e2〈2〉=⇒ Ψ

` c ∼(ε,δ) if e2 then c2 else c′2 : Φ=⇒ Ψ

WHILE-L

` c1 ∼(0,0) skip : Φ∧ e1〈1〉=⇒ Φ
|= Φ→ Φ1〈1〉 Φ1 |=while e1 do c1 lossless

`while e1 do c1 ∼(0,0) skip : Φ=⇒ Φ∧¬e1〈1〉

WHILE-R

` skip∼(0,0) c2 : Φ∧ e2〈2〉=⇒ Φ
|= Φ→ Φ2〈2〉 Φ2 |=while e2 do c2 lossless

` skip∼(0,0) while e2 do c2 : Φ=⇒ Φ∧¬e2〈2〉

Figure 4.2: One-sided APRHL rules

4.4 Proof by approximate coupling

Much like PRHL is a logic for formal proofs by coupling, APRHL can be viewed as a logic for formal proofs by
approximate coupling. With the logical rules in hand, we can work out an intuitive understanding of these proofs.

First of all, the close resemblance between PRHL and APRHL indicates that proofs by approximate couplings
are broadly similar to proofs by coupling; the sampling rule [LAP] shows we can choose an approximate coupling
for sampling statements (although for the moment we have just one choice), the sequencing rule [SEQ] indicates
that we can sequence approximate couplings together, and the case rule [CASE] lets us select an approximate
coupling based on the current state of the coupled executions.

The main difference is we must track the approximation parameters ε and δ as we build the coupling. When
we apply the sampling rule [LAP], for instance, we accrue parameters (k · ε, 0) where k is an upper bound on the
distance between the means. In the sequencing rule [SEQ] (and similarly in the loop rule [WHILE]), we add up
the approximate couplings parameters for the sequenced commands. The resulting style of analysis blends proof
by coupling with the cost interpretation of differential privacy (Remark 4.1.6). For instance, we can think of the
rule [LAP] as paying for the privacy cost to couple the samples to be equal. Accordingly, proofs by approximate
coupling recover proofs by the standard composition theorem (Theorem 4.1.4). By introducing other approximate
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CONSEQ
` c1 ∼(ε′,δ′) c2 : Φ′ =⇒ Ψ ′ |= Φ→ Φ′ |= Ψ ′→ Ψ |= ε′ ≤ ε |= δ′ ≤ δ

` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ

EQUIV
` c′1 ∼(ε,δ) c′2 : Φ=⇒ Ψ c1 ≡ c′1 c2 ≡ c′2

` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ

CASE
` c1 ∼(ε,δ) c2 : Φ∧Θ =⇒ Ψ ` c1 ∼(ε,δ) c2 : Φ∧¬Θ =⇒ Ψ

` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ

TRANS
` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ ` c2 ∼(ε′,δ′) c3 : Φ′ =⇒ Ψ ′

` c1 ∼(ε+ε′,exp(ε′)δ+δ′) c3 : Φ′ ◦Φ=⇒ Ψ ′ ◦Ψ

FRAME
` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ FV(Θ)∩MV(c1, c2) =∅

` c1 ∼(ε,δ) c2 : Φ∧Θ =⇒ Ψ ∧Θ

Figure 4.3: Structural APRHL rules

LAPNULL

x1, x2 /∈ FV(e1, e2)
Φ¬ ∀w1, w2 ∈ Z, w1 −w2 = e1〈1〉 − e2〈2〉 → Ψ {w1, w2/x1〈1〉, x2〈2〉}

` x1
$← Lapε(e1)∼(0,0) x2

$← Lapε(e2) : Φ=⇒ Ψ

LAPGEN

x1, x2 /∈ FV(e1, e2)
Φ¬ |k+ e1〈1〉 − e2〈2〉| ≤ k′ ∧∀w1, w2 ∈ Z, w1 + k = w2→ Ψ {w1, w2/x1〈1〉, x2〈2〉}

` x1
$← Lapε(e1)∼(k′·ε,0) x2

$← Lapε(e2) : Φ=⇒ Ψ

Figure 4.4: New Laplace rules for APRHL

couplings for the Laplace distribution, we can achieve clean and compositional approximate coupling proofs of
privacy even when the standard composition theorem from differential privacy does not suffice.

4.5 New couplings for the Laplace distribution

Unlike the rule [SAMPLE] in PRHL, which can couple two uniform distributions in different ways by varying the
bijection, the Laplace rule [LAP] can only couple samples to be equal. To support richer proofs, we introduce two
new approximate couplings for the Laplace distribution and build them into APRHL rules.

Null coupling

Suppose we want to couple the Laplace distributions Lapε(v1) and Lapε(v2). Sampling from these distributions is
equivalent to sampling from Lapε(0) and then adding v1 and v2 respectively, so we can couple by using equal
draws from Lapε(0). Since equal draws from the same distribution have the same probability, this approximate
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coupling is in fact an exact, (0,0)-coupling, an analogue of the identity coupling (Proposition 2.1.10). More
formally, we have the following result.

Proposition 4.5.1. Let v1, v2 ∈ Z. Then:

Lapε(v1) {(x1, x2) | x1 − v1 = x2 − v2}
](0,0) Lapε(v2).

Proof. We construct witnesses µL ,µR ∈ Distr(Z? ×Z?). Define the relation

R¬ {(x1, x2) ∈ Z×Z | x1 − v1 = x2 − v2}

and let L(r) be probability Lapε(0) produces r. Define witnesses

µL(x1, x2) = µR(x1, x2)¬

¨

L(x1 − v1) : (x1, x2) ∈R
0 : otherwise.

Since µL = µR, we know d0 (µL ,µR) = 0. Also, supp(µL) and supp(µR) lie in R ⊆R?. So, it remains to check the
marginal conditions. Using the support condition, we have

π1(µL)(r) = µL(r, r − v1 + v2) = L(r − v1) = Lapε(v1)(r).

A similar calculation shows π2(µR) = Lapε(v2), so µL and µR witness the approximate coupling.

We can capture this approximate coupling with the rule [LAPNULL] in Fig. 4.4. To gain intuition, the following
rule is a simplified special case:

LAPNULL*
x /∈ FV(e)

` x $← Lapε(e)∼(0,0) x $← Lapε(e) :>=⇒ x〈1〉 − x〈2〉= e〈1〉 − e〈2〉

The coupling keeps the distance between the samples the same as the distance between the means. The general
rule [LAPNULL] can prove post-conditions of any shape.

Theorem 4.5.2. The rule [LAPNULL] is sound.

Proof. We leave the logical context ρ implicit. Let V ¬ X \ {x1, x2} be the non-sampled variables; we write
m[V ] for the restriction of a memory m to variables in V . Consider any two memories m1, m2, let the means be
v1 ¬ ¹e1ºm1 and v2 ¬ ¹e2ºm2, and let the output distributions be

µ1 ¬ ¹x1
$← Lapε(e1)ºm1 and µ2 ¬ ¹x2

$← Lapε(e2)ºm2.

We construct an approximate coupling between µ1 and µ2. By Proposition 4.5.1 we have

Lapε(v1) {(x1, x2) | x1 − v1 = x2 − v2}
](0,0) Lapε(v2).

By Theorem 4.2.7 with maps ¹x1º and ¹x2º, we obtain

µ1 ¹x1〈1〉 − v1 = x2〈2〉 − v2º
](0,0) µ2.

By the free variable condition, v1 = ¹e1ºm′1 and v2 = ¹e2ºm′2 for every memory m′1 ∈ supp(µ1) and m′2 ∈ supp(µ2),
so we may assume by Proposition 4.2.6 that the witnesses are supported on such memories, giving witnesses to

µ1 ¹x1〈1〉 − e1〈1〉= x2〈2〉 − e2〈2〉º
](0,0) µ2.
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Also by the free variable condition, m′1[V ] = m1[V ] and m′2[V ] = m2[V ] so

µ1 {(m′1, m′2) | m
′
1[V ] = m1[V ], m′2[V ] = m2[V ], m′1(x1)− ¹e1ºm1 = m′2(x2)− ¹e2ºm2}

](0,0)
µ2.

By the pre-condition, (m1, m2) satisfy

∀w1, w2 ∈ Z, w1 −w2 = e1〈1〉 − e2〈2〉 → Ψ {w1, w2/x1〈1〉, x2〈2〉}

and so
µ1 Ψ

](0,0) µ2,

showing [LAPNULL] is sound.

General coupling

Our next approximate coupling shifts the samples apart by a constant amount. Suppose we want to approximately
couple the Laplace distributions Lapε(v1) and Lapε(v2) so that the samples x1, x2 satisfy x1 + k = x2. Intuitively,
the approximation parameters should depend on the shift k and the distance |v1 − v2| between the means—larger
shifts and larger distances imply that we match samples with greater difference in probabilities. More formally, we
have the following result.

Proposition 4.5.3. Let k, k′, v1, v2 ∈ Z, and suppose |k+ v1 − v2| ≤ k′. Then:

Lapε(v1) {(x1, x2) | x1 + k = x2}
](k′ε,0) Lapε(v2).

Proof. We need two witnesses µL ,µR ∈ Distr(Z? ×Z?). Define the relation

R¬ {(x1, x2) ∈ Z×Z | x1 + k = x2}

and let L(r) be the probability Lapε(0) produces r. Define witnesses

µL(x1, x2)¬

¨

L(x1 − v1) : (x1, x2) ∈R
0 : otherwise

and µR(x1, x2)¬

¨

L(x2 − v2) : (x1, x2) ∈R
0 : otherwise.

By definition, supp(µL) and supp(µR) lie in R ⊆R?. The marginal conditions are easy to check. So, it remains to
check the distance condition. It suffices to show

µL(x1, x2)≤ exp(k′ε) ·µR(x1, x2)

for every (x1, x2) ∈ Z? ×Z?, since summing over any set S ⊆ Z? ×Z? gives µL(S)≤ exp(k′ε) ·µR(S).
Clearly the claim is true for (x1, x2) /∈R; note that µL and µR are both zero when x1 or x2 is ?. Otherwise we

just need to bound
L(x1 − v1)≤ exp(k′ε) · L(x2 − v2)

where x1 + k = x2. Unfolding definitions, it suffices to bound

exp(−|x1 − v1|ε)≤ exp(k′ε) · exp(−|x1 + k− v2|ε),

which follows by assumption:
|x1 + k− v2| − |x1 − v1| ≤ |k− v2 + v1| ≤ k′.

So, dk′ε (µL ,µR)≤ 0 and µL ,µR witness the approximate coupling.
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This approximate coupling is modeled by the rule [LAPGEN], in Fig. 4.4. Note that k and k′ must be logical
expressions, independent of the program state. To gain intuition, the following rule is a simplified special case:

LAPGEN*
` x $← Lapε(e)∼(k′·ε,0) x $← Lapε(e) : |k+ e〈1〉 − e〈2〉| ≤ k′ =⇒ x〈1〉+ k = x〈2〉

As expected, the post-condition ensures that the coupled samples are shifted apart by k. The approximation
parameters scale as k′; this measures the difference between the k-shifted means. As a sanity check, when k′ = 0
the distribution means are shifted by k and we have an exact, (0,0)-coupling. The general rule [LAPGEN] can
prove post-conditions of any shape.

Theorem 4.5.4. The rule [LAPGEN] is sound.

Proof. We leave the logical context ρ implicit. Let V ¬ X \ {x1, x2} be the non-sampled variables; we write
m[V ] for the restriction of a memory m to variables in V . Consider any two memories m1, m2, let the means be
v1 ¬ ¹e1ºm1 and v2 ¬ ¹e2ºm2 such that |k+ v1 − v2| ≤ k′, and let the output distributions be

µ1 ¬ ¹x1
$← Lapε(e1)ºm1 and µ2 ¬ ¹x2

$← Lapε(e2)ºm2.

We construct an approximate coupling between µ1 and µ2. By Proposition 4.5.3, we have

Lapε(v1) {(x1, x2) | x1 + k = x2}
](k′ε,0) Lapε(v2).

By Theorem 4.2.7 with maps ¹x1º and ¹x2º, we obtain

µ1 ¹x1〈1〉+ k = x2〈2〉ºρ
](k′ε,0) µ2.

By the free variable condition, m′1[V ] = m1[V ] and m′2[V ] = m2[V ] for all memories m′1 ∈ supp(µ1) and
m′2 ∈ supp(µ2), so we may assume by Proposition 4.2.6 that the witnesses are supported on such memories. Hence,
we have the following lifting:

µ1 {(m′1, m′2) | m
′
1[V ] = m1[V ], m′2[V ] = m2[V ], m′1(x1) + k = m′2(x2) ∈ ¹x1〈1〉+ k = x2〈2〉º}

](k′ε,0)
µ2

By the pre-condition, (m1, m2) satisfy

∀w1, w2 ∈ Z, w1 + k = w2→ Ψ {w1, w2/x1〈1〉, x2〈2〉}

and so
µ1 Ψ

](k′ε,0) µ2,

showing [LAPGEN] is sound.

Remark 4.5.5. If we could take k′ ¬ 0 and k ¬ e2〈2〉 − e1〈1〉 in [LAPGEN], we would recover [LAPNULL]. However,
k must be a constant or logical variable. (We will discuss possible ways to lift this requirement in Section 6.1.)

4.6 Pointwise privacy

In sophisticated privacy proofs, it is often convenient to focus on a single output at a time. We call this pattern
pointwise equality and formalize it as the following property of approximate couplings.
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PW-EQ

|=
∑

i∈R

δ′ {i/γ} ≤ δ γ /∈ FV(Φ, c1, c2, e1, e2,ε,δ)

∀γ ∈R, ` c1 ∼(ε,δ′) c2 : Φ=⇒ e1〈1〉= γ→ e2〈2〉= γ
` c1 ∼(ε,δ) c2 : Φ=⇒ e1〈1〉= e2〈2〉

Figure 4.5: Pointwise equality rule [PW-EQ] for APRHL

Proposition 4.6.1. Let µ1,µ2 be sub-distributions over R and suppose for every i ∈R, we have

µ1 {(r1, r2) | r1 = i→ r2 = i}](ε,δi) µ2

for non-negative ε and {δi}i∈R. Then we have

µ1 (=)
](ε,δ) µ2

where δ =
∑

i∈R δi .

Proof. By Proposition 4.2.4 we know for every i ∈R,

µ1(i)≤ exp(ε) ·µ2(i) +δi .

So for any subset S ⊆R, summing over i ∈ S yields

µ1(S)≤ exp(ε) ·µ2(S) +
∑

i∈S

δi ≤ exp(ε) ·µ2(S) +δ

since δi ≥ 0. We define witnesses µL(r, r)¬ µ1(r) and µR(r, r)¬ µ2(r) for r 6= ?, and zero otherwise. The support
and marginal conditions are easy to check. For the distance condition, consider any set T ⊆R? ×R? and let

T ′ ¬ T ∩ {(r1, r2) ∈R×R | r1 = r2}.

We know µL(T ) = µL(T ′) and µR(T ) = µR(T ′). Letting S ′ = {r ∈R | (r, r) ∈ T ′}, we have

µL(T ′) = µ1(S ′)≤ exp(ε) ·µ2(S ′) +δ ≤ exp(ε) ·µR(T ′) +δ

so dε (µL ,µR)≤ δ and we have witnesses as desired.

Pointwise equality simplifies coupling proofs of differential privacy: rather than proving differential privacy in
one shot, we can give a separate proof for each possible output and then combine the results. We can internalize
pointwise equality as the APRHL rule [PW-EQ] in Fig. 4.5. In the premise, the pointwise judgment is indexed by a
logical variable γ. The conclusion gives an approximate lifting of equality in the post-condition.

Theorem 4.6.2. The rule [PW-EQ] is sound.

Proof. Let ρ be the logical context. The proof follows essentially by Proposition 4.6.1, handling the logical variables
carefully. Consider two memories (m1, m2) ∈ ¹Φºρ and output distributions

µ1 ¬ ¹c1ºρm1 and µ2 ¬ ¹c2ºρm2.
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We construct an approximate lifting relating µ1 and µ2. By the free variable condition, (m1, m2) ∈ ¹Φºρ∪γ7→i for
any i and so by validity of the premises, we can use the forward direction of Theorem 4.2.7 to project the liftings
in the premises to the expressions e1 and e2:

(¹e1ºρ∪γ7→i)
](µ1) {(a1, a2) ∈R×R | a1 = i→ a2 = i}](ε,δ

′) (¹e2ºρ∪γ7→i)
](µ2)

for each i ∈R. (Technically ε and δ′ are also interpreted in the logical context ρ ∪ γ 7→ i; we elide this.) By the
free variable condition, the two projected distributions are in fact the same for all i, and everything besides δ′ can
be interpreted in the original context ρ. Proposition 4.6.1 with δi ¬ ¹δ′ºρ∪γ7→i gives

¹e1º
]
ρ(µ1) {(a1, a2) | a1 = a2}

](ε,δ)
¹e2º

]
ρ(µ2),

and the reverse direction of Theorem 4.2.7 with maps ¹e1ºρ and ¹e2ºρ gives

µ1 (¹e1〈1〉= e2〈2〉ºρ)
](ε,δ) µ2.

Thus, [PW-EQ] is sound.

Remark 4.6.3. From a logical perspective, pointwise equality resembles the Leibniz equality principle:

|= (∀i, x = i→ y = i)→ x = y.

Indeed, if APRHL had a structural rule to convert an external universal quantifier into an internal universal
quantifier, e.g., something like

FORALL
∀i, ` c1 ∼(ε,δ) c2 : Φ=⇒ Ψi

` c1 ∼(ε,δ) c2 : Φ=⇒∀i, Ψi

[PW-EQ] could be derived using the rule of consequence with Leibniz equality. Unfortunately this rule is not sound,
not even in PRHL. In fact, if we have just two judgments with post-conditions Ψ1 and Ψ2, it is not sound in general
to combine them into a single judgment with post-condition Ψ1 ∧Ψ2: the underlying witnesses may be different.
The rule [PW-EQ] is a special case where we may safely combine post-conditions across different judgments.

Remark 4.6.4. On a more practical note, the post-condition in [PW-EQ] is highly specific—the assertion must be
equality. In Chapter 5 we will see some ways to partially mitigate this limitation, for instance by incorporating
one-sided conjuncts (Section 5.2).

4.7 Coupling proofs of privacy

Approximate coupling proofs are a convenient and compositional tool for proving differential privacy. Starting
from two adjacent inputs, we select an approximate coupling for each pair of corresponding sampling instructions
such that (i) the total cost does not exceed the target privacy parameters (ε,δ), and (ii) the outputs on the two
executions are equal under the approximate coupling. By pointwise equality, we can sometimes establish point (ii)
by building an approximate coupling separately for each possible output value i, ensuring that if the first output is
equal to i then the second output is also equal to i. We will apply the asymmetric approximate couplings from
Section 4.5 to induce this kind of asymmetric relation on outputs.

Compared to existing proofs of privacy, approximate coupling proofs are simpler and more concise, abstracting
away reasoning about conditional probabilities. To demonstrate, we prove differential privacy for two algorithms
from the privacy literature. We present each proof twice: first as an approximate coupling proof, then as a formal
proof in APRHL.
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The Report-noisy-max mechanism

Our first example is called Report-noisy-max (Dwork and Roth, 2014). Given a list of numeric queries q1, . . . , qN :
D→ Z and a database d ∈ D, this mechanism computes qi(d) for each i and adds fresh Laplace noise to each
answer, releasing the index i with the highest noisy answer. Alternatively, we can think of each query as indexed by
an element r in some finite range R, where qr computes the score for r given private data d. Then Report-noisy-max
is a close cousin to the well-known Exponential mechanism of McSherry and Talwar (2007), which finds an element
with a high score while preserving privacy.

Suppose evalQ(i, d) returns qi(d). We implement Report-noisy-max as the following program rnm:

maxA← 0;
maxI← 0;
i← 1;
while i ≤ N do

a $← Lapε/2(evalQ(i, d));
if maxI = 0∨ a >maxA then

maxA← a; maxI← i;
i← i + 1

The variable maxI stores the output of the mechanism; we assume it ranges over N.

Theorem 4.7.1. Suppose each query qi is 1-sensitive: |qi(d)−qi(d ′)| ≤ 1 for adjacent databases d, d ′. Then executing
rnm and returning maxI is ε-differentially private.

While we could prove privacy with the sequential composition theorem (Theorem 4.1.4), we would get an
overly conservative bound of (Nε, 0)-privacy since we must pay for each Laplace sampling. Report-noisy-max is
an example of a mechanism where the precise analysis showing (ε, 0)-privacy previously required an ad hoc proof.
However, since approximate couplings satisfy a more general composition principle, we can prove privacy for this
mechanism compositionally.

Proof by approximate coupling. Consider a possible output j ∈ N. We construct an (ε, 0)-approximate coupling
such that if maxI〈1〉= j, then maxI〈2〉= j. If j = 0 this is easy since the only way maxI = 0 is if N = 0 and the
loops terminate immediately. If j > N this is also easy, as maxI cannot exceed N .

So suppose j ∈ [1, N]. In iterations i 6= j, we couple the samplings so both runs use the same amount of noise:

a〈1〉 − evalQ(i〈1〉, d〈1〉) = a〈2〉 − evalQ(i〈2〉, d〈2〉).

In particular, a〈2〉 ≤ a〈1〉+ 1. This is a (0,0)-approximate coupling for each iteration. For iteration i = j, we
couple so the noisy answer in the second run is one larger than the noisy answer in the first run:

a〈1〉+ 1= a〈2〉.

The true answers evalQ(i〈1〉, d〈1〉) and evalQ(i〈2〉, d〈2〉) are at most 1 apart and the shift is 1. Since we use
Laplace noise with parameter ε/2, this is a (2 · ε/2,0) = (ε, 0)-coupling.

Now if the noisy answer on iteration j is the highest noisy answer in the first run, then it must also be the
highest noisy answer in the second run: by the coupling, a〈1〉+ 1 = a〈2〉 for iteration j and a〈2〉 ≤ a〈1〉+ 1 for all
other iterations. The total cost is (ε, 0), establishing (ε, 0)-differential privacy.

Remark 4.7.2. Earlier versions of Report-noisy-max also returned the noisy answer maxA in addition to the index
maxI. However, subtle errors in the privacy proof were later discovered; a correct proof of privacy is currently
not known. Attempting a proof by approximate coupling immediately runs into a problem: we have coupled
a〈1〉+ 1= a〈2〉 for the critical iteration, but we need a〈1〉= a〈2〉 if we are to safely return the noisy answer too.



CHAPTER 4. APPROXIMATE COUPLINGS FOR DIFFERENTIAL PRIVACY 63

In order to perform this proof in APRHL, the main complication is to only pay for coupling the critical iteration
j. Directly applying the loop rule would give an overly conservative guarantee of (Nε, 0)-privacy since [WHILE]
assumes each iteration has the same cost. To get around this problem, we first use the program equivalence rule
to split the loop into three separate pieces: iterations before j, iteration j, and iterations after j. Then we arrange
a (0, 0)-coupling for each iteration in the first and last loops, and an (ε, 0)-coupling for the middle loop consisting
of just the critical iteration.

Theorem 4.7.3. Suppose each query qi is 1-sensitive: |qi(d)− qi(d ′)| ≤ 1 for adjacent databases d, d ′. Then the
following judgment is derivable in APRHL:

` rnm∼(ε,0) rnm : Adj(d〈1〉, d〈2〉) =⇒maxI〈1〉=maxI〈2〉

Proof. We verify an equivalent program, dividing the loop in three:

maxA← 0;
maxI← 0;
i← 1;
while i ≤ N ∧ i < j do

a $← Lapε/2(evalQ(i, d));
if maxI = 0∨ a >maxA then

maxA← a; maxI← i;
i← i + 1;

while i ≤ N ∧ i = j do
a $← Lapε/2(evalQ(i, d));
if maxI = 0∨ a >maxA then

maxA← a; maxI← i;
i← i + 1;

while i ≤ N do
a $← Lapε/2(evalQ(i, d));
if maxI = 0∨ a >maxA then

maxA← a; maxI← i;
i← i + 1

We call this program rnm′. Our goal is to prove the pointwise judgment

` rnm′ ∼(ε,0) rnm′ : Adj(d〈1〉, d〈2〉) =⇒maxI〈1〉= j→maxI〈2〉= j

for every j ∈ N. When j = 0 or j > N , the proof is straightforward—in the first case N = 0, and in the second
case maxI〈1〉 = j must be false. So we focus on the more interesting cases, j ∈ [1, N]. The initial assignment
statements can be handled with [ASSN]. Let the three loops be w<, w=, and w>, and let body be the common loop
body. Define the following invariants:

Θ< ¬







|maxA〈1〉 −maxA〈2〉| ≤ 1

maxI〈1〉< i〈1〉 ∧maxI〈2〉< i〈1〉
¬(i〈1〉 ≤ N ∧ i〈1〉< j)→ i〈1〉= j

Θ= ¬







|maxA〈1〉 −maxA〈2〉| ≤ 1

maxI〈1〉= j→ (maxI〈2〉= j ∧maxA〈1〉+ 1=maxA〈2〉)
¬(i〈1〉 ≤ N ∧ i〈1〉= j)→ i〈1〉= j + 1

Θ> ¬

¨

i〈1〉> j
maxI〈1〉= j→ (maxI〈2〉= j ∧maxA〈1〉+ 1=maxA〈2〉)
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We leave the invariant Adj(d〈1〉, d〈2〉)∧ i〈1〉= i〈2〉 implicit and we prove three judgments corresponding to the
three cases. First, we have

` body ∼(0,0) body : Θ< =⇒ Θ<
by coupling the Laplace samplings using [LAPNULL], ensuring |maxA〈1〉 −maxA〈2〉| ≤ 1. Thus, we have the
following judgment for the first loop by [WHILE]:

` w< ∼(0,0) w< : Θ< =⇒ Θ< ∧¬(i〈1〉 ≤ N ∧ i〈1〉< j).

For the next loop body, we have
` body ∼(ε,0) body : Θ= =⇒ Θ=

by coupling the Laplace samplings using [LAPGEN] with k = 1, k′ = 2, ensuring a〈1〉+ 1= a〈2〉. Combined with
the pre-condition Θ=, if the first run exceeds maxA〈1〉 then the second run also exceeds maxA〈2〉. By the rule
[LAPGEN], this coupling costs (ε, 0). Since this loop runs for just one iteration, we have a judgment for the second
loop by [WHILE]:

` w= ∼(ε,0) w= : Θ= =⇒ Θ= ∧¬(i〈1〉 ≤ N ∧ i〈1〉= j).

Finally for the last loop, we have
` body ∼(0,0) body : Θ> =⇒ Θ>

by coupling the samplings using [LAPNULL]. Applying [WHILE] gives a similar judgment for the last loop:

` w> ∼(0,0) w> : Θ> =⇒ Θ>

We can combine the three loop judgments while summing the approximation parameters with [SEQ], applying the
rule of consequence with implications

|= Θ< ∧¬(i〈1〉 ≤ N ∧ i〈1〉< j)→ Θ=
|= Θ= ∧¬(i〈1〉 ≤ N ∧ i〈1〉= j)→ Θ>

to establish
` rnm′ ∼(ε,0) rnm′ : Adj(d〈1〉, d〈2〉) =⇒maxI〈1〉= j→maxI〈2〉= j.

We conclude differential privacy by applying [PW-EQ] and [EQUIV]:

` rnm∼(ε,0) rnm : Adj(d〈1〉, d〈2〉) =⇒maxI〈1〉=maxI〈2〉.

Remark 4.7.4. Report-noisy-max draws noise from the Laplace distribution. A slight variant of this algorithm uses
the one-sided Laplace distribution, also called the exponential distribution, to achieve similar results. This variant is
closely related to the Exponential mechanism of McSherry and Talwar (2007); for instance, if we add noise from
the continuous exponential distribution, Report-noisy-max is equivalent to the Exponential mechanism (Dwork
and Roth, 2014, Theorem 3.13).

Replacing the Laplace distribution with the one-sided Laplace distribution makes the privacy proof only a bit
more difficult. While privacy still does not follow from the standard composition theorem—in fact, there is now
nothing to compose because sampling from the one-sided Laplace distribution isn’t differentially private—we can
give a similar proof by approximate coupling. The main difference is in the rule [LAPGEN]: the analogous rule for
the one-sided Laplace distribution has a slightly stronger pre-condition, with 0≤ k+ e1〈1〉 − e2〈2〉 ≤ k′ in place of
|k+ e1〈1〉 − e2〈2〉| ≤ k′. Our coupling proof is otherwise unchanged.
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i← 1; out← [];
t $← Lapε/4(T );
while i ≤ N ∧ |out|< C do

ans← (0,0); go← true;
while i ≤ N ∧ go do

a $← Lapε/8C(evalQ(i, d));
if a > t then

noisy $← Lapε/4C(evalQ(i, d));
ans← (i, noisy);
out← ans :: out;
go← false;

i← i + 1

Figure 4.6: Sparse Vector

The Sparse Vector mechanism

Our second example is the Sparse Vector mechanism, a well-known algorithm with a challenging privacy proof. At
least six variants were thought to be proved private, only for subtle mistakes to later surface in four of them (Lyu
et al., 2017). Perhaps the canonical (correct) version of the algorithm can be found in the textbook by Dwork and
Roth (2014), where it is called NUMERICSPARSE. This mechanism takes a numeric threshold T ∈ Z, a cutoff C ∈ N,
a list of numeric queries q1, . . . , qN : D→ Z, and a database d ∈ D as input. Sparse Vector releases the indices of
the first C queries that have answer approximately above the threshold, along with noisy answers for each of these
queries. The mechanism adds Laplace noise to the threshold and Laplace noise to each query answer, returning
the queries with noisy answer above the noisy threshold. Again, the challenge in the privacy analysis is to only
pay for above-threshold queries, rather than all queries.4

Figure 4.6 presents the code for the Sparse Vector algorithm. The variable out stores a list of pairs of an index
and a noisy answer for each query that is approximately above-threshold; the list is initially empty and pairs are
added to the head. The algorithm stops when it answers C queries or when it processes all N queries. The code is
structured in a slightly artificial way—the queries are broken into chunks, where each iteration of the outer loop
corresponds to exactly one above-threshold query. In their presentation, Dwork and Roth (2014) first prove privacy
for a subroutine called ABOVETHRESHOLD—which randomizes the threshold and executes one iteration of the outer
loop—by carefully manipulating conditional probabilities. They then verify the whole mechanism NUMERICSPARSE

by composing calls to ABOVETHRESHOLD and applying the standard composition theorem (Theorem 4.1.4).
Rather than re-randomize the threshold after every answered query, we add noise to the threshold just at the

beginning of the algorithm; this variant was independently proposed by Lyu et al. (2017). Accordingly, it is no
longer possible to analyze the outer loop iterations via standard privacy composition since each iteration of the
outer loop is not differentially private. While using the same noise for the threshold does not affect the asymptotic
accuracy of Sparse Vector, practical applications may benefit.

Theorem 4.7.5. Suppose each query qi is 1-sensitive: |qi(d) − qi(d ′)| ≤ 1 for adjacent databases d, d ′, and the
threshold T is the same for both runs. Then Sparse Vector is ε-differentially private.

Proof by approximate coupling. We first couple the threshold sampling so t〈1〉+ 1= t〈2〉. The means are 0 apart,
the coupled samples are 1 apart, and the noise is from the Laplace distribution with parameter ε/4, so this is an
(1 · ε/4,0) = (ε/4,0) approximate coupling. Assuming this coupling, we argue that the two executions of the

4A precursor of this algorithm was designed to release a private version of a vector of numbers where most of the entries are known to be
zero, i.e., a sparse vector.
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inner loop can be approximately coupled to satisfy ans〈1〉= ans〈2〉. We consider the inner loop and construct an
approximate coupling such that if ans〈1〉= ( j, v) then ans〈2〉= ( j, v) as well.

Just like we did in the proof of Report-noisy-max, we use different couplings depending on where we are in
the loop relative to iteration j. In iterations before j, we use the null coupling when sampling a and noisy to
give a (0,0)-approximate coupling such that |a〈1〉 − a〈2〉| ≤ 1; this ensures that if we don’t go above threshold
in the first execution before j, then we also don’t go above threshold in the second execution before j. We
take the same (0,0)-coupling for iterations after j. In the critical iteration j, we couple the samplings for a to
ensure a〈1〉+ 1 = a〈2〉 and we couple noisy〈1〉 = noisy〈2〉 if necessary. Combined with the threshold coupling
t〈1〉+1 = t〈2〉, this ensures that if we go above threshold in iteration j in the first execution then we also go above
threshold in iteration j in the second execution, and the noisy answers for above-threshold queries are equal.

To compute the approximation parameters, the coupling for a is an (ε/4C , 0)-approximate coupling: the
distance between the coupled samples is at most 2 greater than the distance between the means, and the noise
is drawn from Lapε/8C . The coupling for noisy is the standard coupling for the Laplace mechanism; it is an
(ε/4C , 0)-approximate coupling since the true answers are at most 1 apart and the noise is drawn from Lapε/4C .
So, iteration j uses an (ε/4C + ε/4C , 0) = (ε/2C , 0)-approximate coupling and the loop coupling ensures that
if ans〈1〉= ( j, v) then ans〈2〉= ( j, v). This gives an (ε/2C , 0)-approximate coupling for the inner loop ensuring
ans〈1〉= ans〈2〉 and preserving out〈1〉= out〈2〉.

Since there are at most C iterations of the outer loop, we have an (ε/2,0)-approximate coupling ensuring
out〈1〉= out〈2〉 at the end of the algorithm. Combined with the (ε/2,0)-coupling for the threshold, this shows
that Sparse Vector is (ε, 0)-differentially private.

Remark 4.7.6. Earlier versions of Sparse Vector returned the noisy answers without adding fresh noise. These
variants are now known to be incorrect: Lyu et al. (2017) show they are not ε-differentially private for any finite
ε. If we attempt a proof by approximate coupling we immediately hit a problem: after coupling a〈1〉+ 1= a〈2〉,
returning the noisy answer a is not differentially private. By itself, this obstacle doesn’t show the algorithm is not
differentially private. However, it suggests that something may be amiss.

We can also give a more formal proof of privacy in APRHL. Like we did for Report-noisy-max, we transform
the loops in order to apply couplings with different costs in different iterations. Sparse Vector also introduces an
additional complication: under the we will build coupling, we don’t know the inner loops remain synchronized.
So, we work with the following, equivalent implementation:

i← 1; out← [];
t $← Lapε/4(T );
while i ≤ N ∧ |out|< C do

ans← (0, 0); go← true;
while i ≤ N do

a $← Lapε/8C(evalQ(i, d));
if a > t ∧ go then

noisy $← Lapε/4C(evalQ(i, d));
ans← (i, noisy);
go← false;

i← i + 1;
if p1(ans) 6= 0 then

out← ans :: out; i← p1(ans) + 1

Compared to the more straightforward implementation in Fig. 4.6, the main difference is that the inner loop
passes over all the queries. Once the inner loop finds an above threshold query, the algorithm sets the flag go and
the inner loop skips over all remaining queries. Then if an above-threshold query was found in the inner loop, the
index in ans must be non-zero. In this case, the outer loop records the answer and resets the counter to the query
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after the most recent above-threshold query (recall p1 returns the first element of a pair). By running through all
the queries, the inner loops can be analyzed in a synchronized fashion. We call the inner loop aboveT, and the
whole program program sparseV.

Theorem 4.7.7. Suppose each query qi is 1-sensitive: |qi(d) − qi(d ′)| ≤ 1 for adjacent databases d, d ′ and the
threshold T is the same for both runs. Then the following judgment is derivable in APRHL:

` sparseV ∼(ε,0) sparseV : Adj(d〈1〉, d〈2〉) =⇒ out〈1〉= out〈2〉

Proof. We elide the adjacency assertion Adj(d〈1〉, d〈2〉) and synchronization assertion i〈1〉= i〈2〉 since they are
preserved throughout the proof. Let’s first consider the inner loop aboveT. We prove the following judgment for
every pair ( j, v) ∈ N×Z:

` aboveT ∼(ε/2C ,0) aboveT : t〈1〉+ 1= t〈2〉=⇒ ans〈1〉= ( j, v)→ ans〈2〉= ( j, v)

The cases j = 0 and j > N are trivial, so we consider j ∈ [1, N]. Much like we did for Report-noisy-max, we split
the loop into three pieces: iterations before j, iteration j, and iterations after j.

while i ≤ N ∧ i < j do
a $← Lapε/8C(evalQ(i, d));
if a > t ∧ go then

noisy $← Lapε/4C(evalQ(i, d));
ans← (i, noisy); go← false;

i← i + 1;
while i ≤ N ∧ i = j do

a $← Lapε/8C(evalQ(i, d));
if a > t ∧ go then

noisy $← Lapε/4C(evalQ(i, d));
ans← (i, noisy); go← false;

i← i + 1;
while i ≤ N do

a $← Lapε/8C(evalQ(i, d));
if a > t ∧ go then

noisy $← Lapε/4C(evalQ(i, d));
ans← (i, noisy); go← false;

i← i + 1

We call this program aboveT′, the loops w<, w=, and w>, and body of the loop body. We take invariants:

Θ< ¬







t〈1〉+ 1= t〈2〉
go〈1〉 → go〈2〉
¬(i〈1〉 ≤ N ∧ i〈1〉< j)→ i〈1〉= j

Θ= ¬















t〈1〉+ 1= t〈2〉
go〈1〉 → go〈2〉
ans〈1〉= ( j, v)→ ans〈2〉= ( j, v)
¬(i〈1〉 ≤ N ∧ i〈1〉= j)→ i〈1〉= j + 1

Θ> ¬







t〈1〉+ 1= t〈2〉
i〈1〉> j
ans〈1〉= ( j, v)→ ans〈2〉= ( j, v)



CHAPTER 4. APPROXIMATE COUPLINGS FOR DIFFERENTIAL PRIVACY 68

We begin with the first loop. To show

` body ∼(0,0) body : i〈1〉 ≤ N ∧ i〈1〉< j ∧Θ< =⇒ Θ<,

we couple the sampling for a with the null coupling [LAPNULL] so that

|a〈1〉 − a〈2〉|= |evalQ(i〈1〉, d〈1〉)− evalQ(i〈2〉, d, 〈2〉)| ≤ 1.

For the conditional statements we use the one-sided rules [COND-L] and [COND-R], giving four possible cases for
the guard a > t ∧ go in the two executions:

(True, True) We use [LAPNULL] to couple the samplings for noisy and establish ¬go〈1〉.

(True, False) We use [LAP-L] for sampling noisy〈1〉 to establish ¬go〈1〉.

(False, True) If go〈1〉 is false, then we use [LAP-R] for sampling noisy〈2〉 and conclude go〈1〉 → go〈2〉.
If go〈1〉 is true, then a〈1〉 must be below threshold but this case is impossible: a〈2〉 must be above threshold
but the thresholds are coupled so that t〈1〉+ 1= t〈2〉 and |a〈1〉 − a〈2〉| ≤ 1.

(False, False) We use [SKIP], preserving go〈1〉 → go〈2〉.

Putting the cases together, we have
` body ∼(0,0) body : Θ< =⇒ Θ<.

Since the loops are synchronized we apply [WHILE] to get

` w< ∼(0,0) w< : Θ< =⇒ Θ< ∧¬(i〈1〉 ≤ N ∧ i〈1〉< j).

Next, we turn to the second loop. We couple the samplings for a so that

a〈1〉+ 1= a〈2〉

with [LAPGEN], taking k = 1, k′ = 2. Since the parameter for the Laplace sampling is ε/8C , this is a (2 ·ε/8C , 0) =
(ε/4C , 0)-approximate coupling. Like for the first loop, we have four cases when analyzing the conditional. The
most interesting case is when both guards are true, when we couple the samplings for noisy with the standard
Laplace rule [LAP] so that noisy〈1〉 = noisy〈2〉; this is an (ε/4C , 0)-approximate coupling since the queries are
1-sensitive. We wind up with ¬go〈1〉 and ¬go〈2〉, establishing the post-condition go〈1〉 → go〈2〉. Moreover,

ans〈1〉= ( j, v)→ ans〈2〉= ( j, v)

under the coupling. This suffices to establish the invariant Θ= when both guards are true. We use a similar
argument for the other three cases, proving

` body ∼(ε/2C ,0) body : Θ= =⇒ Θ=.

Since there is exactly one iteration, [WHILE] gives

` w= ∼(ε/2C ,0) w= : Θ= =⇒ Θ= ∧¬(i〈1〉 ≤ N ∧ i〈1〉= j).

In the last loop, we couple the samplings for a with [LAPNULL] and the samplings for noisy with [LAPNULL] or the
one-sided rules [LAP-L] or [LAP-R], depending on whether the guards are true or not. This gives

` w> ∼(0,0) w> : Θ> =⇒ Θ> ∧¬(i〈1〉 ≤ N).
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After using the rule of consequence with implications

|= Θ< ∧¬(i〈1〉 ≤ N ∧ i〈1〉< j)→ Θ=
|= Θ= ∧¬(i〈1〉 ≤ N ∧ i〈1〉= j)→ Θ>,

we apply [SEQ] to combine the loop judgments and sum the approximation parameters:

` aboveT′ ∼(ε/2C ,0) aboveT′ : t〈1〉+ 1= t〈2〉=⇒ ans〈1〉= ( j, v)→ ans〈2〉= ( j, v).

By applying pointwise equality [PW-EQ] and then the frame rule [FRAME] to preserve the threshold coupling, we
establish the desired judgment for the inner loop:

` aboveT′ ∼(ε/2C ,0) aboveT′ : t〈1〉+ 1= t〈2〉=⇒ ans〈1〉= ans〈2〉 ∧ t〈1〉+ 1= t〈2〉.

Now we turn to the outer loop w of sparseV. At the end of each iteration, we know

i〈1〉= i〈2〉 ∧ out〈1〉= out〈2〉 ∧ t〈1〉+ 1= t〈2〉

since the inner loop guarantees ans〈1〉= ans〈2〉. Applying [WHILE] with decreasing variant

ev ¬ (i = N) ? 0 : C − |out|,

there at most C iterations and each iteration is related by an (ε/2C , 0)-coupling. So we have the following
judgment for the outer loop:

` w∼(ε/2,0) w : out〈1〉= out〈2〉 ∧ t〈1〉+ 1= t〈2〉=⇒ out〈1〉= out〈2〉.

Finally, we ensure the loop pre-condition t〈1〉+1 = t〈2〉 by coupling the sampling instructions for t with [LAPGEN],
taking k, k′ ¬ 1. Since the Laplace distribution has parameter ε/2, this is an (ε/2,0)-approximate coupling.
Putting everything together we have

` sparseV ∼(ε,0) sparseV : Adj(d〈1〉, d〈2〉) =⇒ out〈1〉= out〈2〉,

showing that Sparse Vector is ε-differentially private.

Remark 4.7.8. It would be a bit more natural to use the guard go = false in the final conditional, but showing
go〈1〉 = go〈2〉 after the inner loop is not so easy: our proof can only establish go〈1〉 → go〈2〉. In order to verify the
program with guard go= false, we would need the one-sided invariant

p1(ans) 6= 0↔ go= false

on both sides. While this invariant does hold, here we hit a limitation of the pointwise equality rule [PW-EQ]: the
post-condition is narrowly restricted and we cannot show the above invariant in the post-condition of the inner
loop. Later in Chapter 5 we will see how to leverage these one-sided invariants (cf. rules [AND-L] and [AND-R]).

4.8 Discussion

To close this chapter, we briefly survey related systems for formally verifying differential privacy and discuss other
applications of approximate couplings.
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Formal verification of differential privacy

Due to its rich composition properties and compelling motivations, differential privacy is an attractive target for
formal verification. Researchers have considered a broad array of techniques including linear types (Azevedo de
Amorim, Gaboardi, Gallego Arias, and Hsu, 2014; Azevedo de Amorim, Gaboardi, Hsu, Katsumata, and Cherigui,
2017; Reed and Pierce, 2010; Winograd-Cort, Haeberlen, Roth, and Pierce, 2017), sized types (Gaboardi, Haeberlen,
Hsu, Narayan, and Pierce, 2013), product programs (Barthe et al., 2014b), refinement types (Barthe, Gaboardi,
Gallego Arias, Hsu, Roth, and Strub, 2015b), and more (Ebadi, Antignac, and Sands, 2016; Ebadi and Sands, 2016;
Ebadi, Sands, and Schneider, 2015; McSherry, 2009; Palamidessi and Stronati, 2012; Proserpio, Goldberg, and
McSherry, 2014; Tschantz, Kaynar, and Datta, 2011). (Readers can consult the recent survey by Barthe, Gaboardi,
Hsu, and Pierce (2016d) for a more comprehensive overview.)

Most existing techniques cannot verify privacy proofs beyond composition, such as the two examples we
presented in this chapter. One notable exception is the LIGHTDP system proposed by Zhang and Kifer (2017),
which combines a relational, dependent type system with a product program construction. This system can
prove privacy for the Sparse Vector mechanism with a high degree of automation by using a novel type inference
algorithm and a MAXSAT solver to optimize the privacy cost.

The key theoretical idea behind LIGHTDP is randomness alignment, which specifies an injection from one
sample space to another while recording the difference in probabilities. Randomness alignments are similar to
the approximate couplings we saw for the Laplace mechanism (e.g., in the rules [LAPNULL] and [LAPGEN]). One
important novelty in LIGHTDP is that alignments can be selected lazily, based on the result of the sample in the first
execution. In this way, LIGHTDP can sometimes construct a privacy proof in one shot where APRHL would need to
reason about each output separately with [PW-EQ]. In the Sparse Vector mechanism, for instance, LIGHTDP can
select the shift coupling when the first iteration goes above threshold, and use the null coupling when it does not.
(This approach does not work for Report-noisy-max, as the iteration with the highest noisy score is not known
until the program has finished executing.) This lazy choice of alignment can be modeled by an approximate
coupling that selects between two couplings, depending on a predicate on the first sample. If the predicate and
two couplings satisfy a technical non-overlapping condition, the result is again an approximate coupling.

Theorem 4.8.1 (Choice coupling). Let µ1,µ2 be sub-distributions over A1 and A2. Suppose we have a predicate
P ⊆A1 and two approximate couplings

µ1 R](ε,δ) µ2 and µ1 S](ε,δ) µ2

such that the following non-overlapping condition holds:

R(P)∩ S(A1 \P) =∅,

where R(P) is the set of elements in A2 related to something in P under R, and S(A1 \P) is the set of elements in A2
related to something outside of P under S. Then there is an approximate coupling

µ1 T ](ε,2δ) µ2

where T is the relation

T ¬ {(a1, a2) | (a1 ∈ P → (a1, a2) ∈R)∧ (a1 /∈ P → (a1, a2) ∈ S)}.

Proof. Let ρL ,ρR and σL ,σR witness the two approximate couplings. Define witnesses

µL(a1, a2)¬







ρL(a1, a2) : a1 ∈ P
σL(a1, a2) : a1 /∈ P
0 : a1 = ?

and µR(a1, a2)¬











ρR(a1, a2) : a1 ∈ P
σR(a1, a2) : a1 /∈ P
µ2(a2)−

∑

a′1∈A1
µR(a′1, a2) : a1 = ?.



CHAPTER 4. APPROXIMATE COUPLINGS FOR DIFFERENTIAL PRIVACY 71

The support and marginal conditions are immediate. The main thing to show is that µR(?, a2) is non-negative; it
suffices to show

∑

a′1∈A1
µR(a′1, a2)≤ µ2(a2). There are three cases: either a2 ∈R(P), a2 ∈ S(A1 \P), or none of

the above; by the non-overlapping condition, these cases are mutually exclusive. In the first case, we have
∑

a′1∈A1

µR(a
′
1, a2) =

∑

a′1∈P

ρR(a
′
1, a2) +

∑

a′1∈A\P

σR(a
′
1, a2) =

∑

a′1∈P

ρR(a
′
1, a2)≤ µ2(a2).

The second case is similar:
∑

a′1∈A1

µR(a
′
1, a2) =

∑

a′1∈P

ρR(a
′
1, a2) +

∑

a′1∈A\P

σR(a
′
1, a2) =

∑

a′1∈A\P

σR(a
′
1, a2)≤ µ2(a2).

In the third case the inequality clearly holds, as the sum is equal to 0.
It only remains to check the distance condition dε (µL ,µR) ≤ 2δ. By the distance conditions on the given

witnesses, there are non-negative constants ζ(a1, a2),ξ(a1, a2) such that

ρL(a1, a2)≤ exp(ε) ·ρR(a1, a2) + ζ(a1, a2) and σL(a1, a2)≤ exp(ε) ·σR(a1, a2) + ξ(a1, a2)

with bounded sums:
∑

a1,a2

ζ(a1, a2)≤ δ and
∑

a1,a2

ξ(a1, a2)≤ δ.

By definition, we have
µL(a1, a2)≤ exp(ε) ·µR(a1, a2) +max(ζ(a1, a2),ξ(a1, a2))

for all a1, a2 6= ?; it is easy to check
µL(a1, a2)≤ exp(ε) ·µR(a1, a2)

when a1 = ? or a2 = ?. We can bound the sums
∑

a1,a2

max(ζ(a1, a2),ξ(a1, a2))≤
∑

a1,a2

ζ(a1, a2) + ξ(a1, a2)≤ 2δ

to give the claimed distance condition. Thus µL ,µR witness the desired approximate coupling.

However, this coupling is not quite precise enough: its cost is greater than the maximum cost of the two
couplings. Taking the example of Sparse Vector again, the shift coupling [LAPGEN] has a non-zero cost while the
null coupling [LAPNULL] has zero cost. If we are selecting between these two couplings, we do not want to pay
for the (more expensive) [LAPGEN] coupling on every iteration, but only on the single iteration where the first
execution goes above threshold.

LIGHTDP features a more fine-grained analysis where the cost can depend on which choice was taken. Since
the choice depends on whether the first sample satisfies a predicate (e.g., goes above threshold), this analysis
involves a randomized notion of privacy cost; LIGHTDP uses a product construction as a secondary analysis to
bound the parameters in all possible executions. In contrast, APRHL requires the approximation parameters to be
constant at each stage, though a more general form of approximate coupling allowing variable costs for different
samples enables LIGHTDP-style privacy proofs. (See Chapter 6 for further discussion.)

Approximate couplings in formal verification

Approximate liftings are a flexible abstraction for reasoning about differential privacy. While we have focused on
program logics, approximate liftings have played a central role in other formal verification settings.

Barthe et al. (2014b) show how to verify differential privacy by first interleaving two programs into a single
program and then analyzing the result, a so-called “synchronized product” approach. Their construction replaces
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every pair of corresponding random sampling commands with a single, non-deterministic assignment of a pair,
along with a specification of the relation between the returned values. In this way, they can verify differential
privacy by constructing proofs in non-deterministic Hoare logic. Their technique is based on approximate liftings
and roughly corresponds to the fragment of APRHL where all conditionals are synchronized under the coupling, so
only pairs of identical programs are related.

Approximate liftings can also play a useful role in type systems. Barthe et al. (2015b) propose a relational
refinement type system for a functional language HOARE2. To handle relational reasoning for distributions, their
system features a probability monad over a relation R on the base type, indexed by approximation parameters.
This monad is then interpreted as an approximate lifting with support contained in R. In their typing rule for
monadic bind with initial distributions related by a R-lifting, the body is typed under the assumption that the
samples are related by R, giving a clean way to use information about distributions when reasoning about samples.
This principle can be seen in the APRHL rule [SEQ] or more abstractly, as a monadic composition principle for
approximate liftings.

Barthe et al. (2015b) also explore an interesting application of approximate liftings: given sub-distributions
µ1,µ2 over the unit interval [0, 1],5 the approximate lifting

µ1 (≤)
](ε,δ) µ2

implies a bound on expected values: Ex1∼µ1
[x1] ≤ exp(ε) · Ex2∼µ2

[x2] + δ; this can be seen as a consequence
of approximate stochastic domination. Barthe et al. (2015b) use this observation to prove relational properties
involving expectations for algorithms at the intersection of mechanism design and differential privacy, where
the mechanisms are randomized and the incentive properties follow from differential privacy. Barthe, Gaboardi,
Gallego Arias, Hsu, Roth, and Strub (2016b) use similar ideas to verify more sophisticated incentive properties.

5More precisely, a discrete version of the unit interval [0, 1].



Chapter 5

Advanced approximate couplings

In the previous chapter, we saw how approximate couplings of the Laplace distribution and the pointwise equality
principle support new proofs of privacy by approximate coupling. To enhance the power of this proof technique,
we develop the theory of approximate couplings further in this chapter, giving a potpourri of new constructions and
showing equivalences with other notions of approximate lifting. Our results enable richer proofs by approximate
coupling, capable of modeling more advanced proofs of privacy.

To begin, we show that approximate couplings are a discrete version of the approximate lifting recently proposed
by Sato (2016). This equivalence gives a highly convenient method for constructing approximate couplings and
extends a classical result by Strassen (1965) for probabilistic couplings (Section 5.1). Then, we consider two
new constructions: up-to-bad approximate coupling (Section 5.2) and optimal subset coupling (Section 5.3). To
follow, we identify a symmetric version of approximate coupling that supports an advanced composition principle
generalizing the advanced composition theorem of differential privacy (Section 5.4). To make our constructions
concrete, we introduce new APRHL proof rules and prove differential privacy for the Between Thresholds mechanism,
recently proposed by Bun et al. (2017) (Section 5.5). Finally, we show approximate couplings unify several
previously proposed notions (Section 5.6). Taken together, our equivalences and constructions serve as strong
evidence that we have arrived at a natural, approximate generalization of probabilistic coupling.

5.1 Equivalence with Sato’s approximate lifting

So far, we have considered approximate couplings for discrete distributions. In recent work, Sato (2016) develops
a version of APRHL where programs can sample from continuous distributions, like the Laplace and Gaussian
distributions. Intriguingly, Sato takes a significantly different definition of approximate lifting as the foundation of
his logic. In the discrete case, his definition is as follows.

Definition 5.1.1 (Sato (2016)). Let µ1 and µ2 be sub-distributions over countable sets A1 and A2, and let
R ⊆ A1 ×A2 be a relation. There is an (ε,δ)-approximate R-lifting of (µ1,µ2) if for every subset S1 ⊆ A1, the
following inequality holds:

µ1(S1)≤ exp(ε) ·µ2(R(S1)) +δ.

(Recall R(S1) is the subset of A2 that is related to some element in S1 under R.)

This definition is interesting for several reasons. First, rather than requiring the existence of witness distributions,
Sato’s definition quantifies over all subsets of samples. Second, Sato shows that his definition generalizes the prior
definition of approximate lifting by Barthe and Olmedo (2013) and Olmedo (2014), leaving open the question
of whether they are equivalent; in fact, they are not. However, we show our definition of approximate lifting
(Definition 4.2.2) is equivalent to Sato’s definition in the discrete case. Our result can be seen as an approximate
version of Strassen’s theorem (Theorem 2.1.11); it also implies Strassen’s theorem for discrete sub-distributions.

73
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One direction of the equivalence is not hard to show.

Theorem 5.1.2 (Approximate lifting implies Sato’s lifting). Let µ1 and µ2 be sub-distributions over A1 and A2, and
let R ⊆A1 ×A2 be a binary relation. Suppose there exists an approximate lifting

µ1 R](ε,δ) µ2.

Then µ1(S1)≤ exp(ε) ·µ2(R(S1)) +δ for every subset S1 ⊆A1.

Proof. Let µL ,µR witness the approximate lifting. By the distance, support, and marginal conditions,

µ1(S1) = µL(S1 ×A?2)
≤ exp(ε) ·µR(S1 ×A?2) +δ
= exp(ε) ·µR(S1 ×R(S1)) +δ
≤ exp(ε) ·µR(A?1 ×R(S1)) +δ
= exp(ε) ·µR(R(S1)) +δ.

The other direction—showing Sato’s approximate lifting implies our approximate lifting—is a bit more involved.
We proceed in two steps. First, we prove the implication for distributions over finite sets. Then we generalize to
distributions over countable sets by a limiting argument.

The finite case

The finite case follows from the max flow-min cut theorem. Roughly speaking, Sato’s condition ensures that in
a certain graph, the minimum cut is not too small so the maximum flow must be large. This will imply we can
build witnesses to the approximate lifting from the maximum flow. First, we recall the classical max flow-min cut
theorem (see any standard textbook on algorithms, e.g., Kleinberg and Tardos (2005)).

Theorem 5.1.3 (Max flow-min cut). Let G be a finite graph with vertices V and directed edges E. Let s ∈ V be the
source node (i.e., there are no edges (a, s) ∈ E) and let t ∈ V be the sink node (i.e., there are no edges (t, b) ∈ E);
we assume s and t are unique. We suppose each edge has capacity c(a, b) ∈ R∪ {∞}. A flow from s to t is a map
f : E→ R+ such that (i) the flow is conserved at each internal node:

∑

(a,v)∈E

f (a, v) =
∑

(v,b)∈E

f (v, b)

for every node v 6= s, t, and (ii) the flow respects the capacity constraints: f (a, b)≤ c(a, b). The weight of a flow | f |
is the amount of flow leaving s; by conservation, this is equal to the total flow entering t. A cut C is a partition of the
vertices into two sets (V1, V2). The capacity of a cut |C | is the total capacity of all edges (a, b) crossing (V1, V2), i.e.,
with a ∈ V1 and b ∈ V2.

The weight of the largest flow equals the minimum capacity of a cut (V1, V2) with s ∈ V1 and t ∈ V2.

Theorem 5.1.4. Let µ1 and µ2 be sub-distributions with finite support over sets A1 and A2, and let R ⊆A1×A2 be a
binary relation such that µ1(S1)≤ exp(ε) ·µ2(R(S1))+δ for every S1 ⊆A1. Then there exists an approximate lifting

µ1 R](ε,δ) µ2.

Proof. Without loss of generality, by Theorem 4.2.7 we may take A1 and A2 to be the supports of µ1 and µ2
respectively; these are finite by assumption. We define a finite graph with vertices A?1 ∪A

?
2 ∪ {>,⊥}. Note that we
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take two distinct vertices ?1,?2 corresponding to the ? elements in A?1 and A?2. We connect the source > to every
element of A?1 with capacities

c(>, a1)¬ µ1(a1) · exp(−ε)
c(>,?1)¬ω− exp(−ε) ·µ1(A1),

where ω¬ µ2(A2) + exp(−ε) ·δ. Now c(>,?1)≥ 0 since by assumption,

µ1(A1)≤ exp(ε) ·µ2(R(A1)) +δ ≤ exp(ε) ·µ2(A2).

We connect every element of A?2 to the sink ⊥, with capacities

c(a2,⊥)¬ µ2(a2)
c(?2,⊥)¬ exp(−ε) ·δ.

For the internal nodes, we connect (a1, a2) ∈ A1 ×A2 for all (a1, a2) ∈ R and (a1,?2), (?1, a2) for all a1, a2, all
with capacity∞.

Note that ({s}, V \ {s}) and (V \ {t}, {t}) are both cuts with capacity ω. We show that these are minimal cuts
in the graph. Consider any other cut C = (V1, V2) with edges E(C) crossing the cut. If there is any internal edge
(a, b) ∈ E(C) with a, b 6= >,⊥ then C has infinite capacity and is not a minimal cut. So, we may suppose E(C)
contains only edges of the form (>, a1) and (a2,⊥).

Now if E(C) does not contain (>,?1), then it must cut all edges leading into ⊥; similarly, if E(C) does not
contain (?2,⊥), then it must cut all edges leading from >. Either way, its capacity is at least ω.

Finally, suppose E(C) contains no internal edges and contains both (>,?1) and (?2,⊥). Let S2 ⊆ A2 be the
set of all nodes a2 ∈A2 with (a2,⊥) ∈ E(C), and let S1 ⊆A1 be the set of all nodes a1 ∈A1 with (>, a1) ∈ E(C).
Since C separates > and ⊥, we have

R(A1 \ S1) ⊆ S2.

We can now lower-bound the capacity:

|C |= c(>,S1) + c(S2,⊥) + c(>,?1) + c(?2,⊥)
= exp(−ε) ·µ1(S1) + c(S2,⊥) +ω− exp(−ε) ·µ1(A1) + exp(−ε) ·δ
≥ exp(−ε) ·µ1(S1) + c(R(A1 \ S1),⊥) +ω− exp(−ε) ·µ1(A1) + exp(−ε) ·δ
≥ exp(−ε) ·µ1(S1) + exp(−ε) ·µ1(A1 \ S1)− exp(−ε) ·δ+ω− exp(−ε) ·µ1(A1) + exp(−ε) ·δ
=ω

The final inequality is by Sato’s condition applied to the set A1 \S1. So every cut in this graph has capacity at least
ω, and there is a cut achieving capacity ω. By Theorem 5.1.3, there is a maximum flow f with weight ω. We
define witnesses

µL(a1, a2)¬ exp(ε) · f (a1, a2) : if (a1, a2) ∈R or a2 = ?2

µR(a1, a2)¬ f (a1, a2) : if (a1, a2) ∈R or a1 = ?1

and zero otherwise. The support condition is clear. Since f has weight ω, it must saturate all edges exiting > and
entering ⊥ and so the marginal conditions are also clear.

The only thing to check is the distance condition dε (µL ,µR)≤ δ. It suffices to show this condition pointwise,
by finding non-negative ζ(a1, a2) such that µL(a1, a2)≤ exp(ε) ·µR(a1, a2) + ζ(a1, a2) and

∑

(a1,a2)
ζ(a1, a2)≤ δ.

For all a1 ∈A?1 and all a2 6= ?2, we take ζ(a1, a2) = 0. When a2 = ?2 we know

µL(a1,?2) = exp(ε) · f (a1,?2) and µR(a1,?2) = 0,
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so we may take ζ(a1,?2) = exp(ε) · f (a1,?2). Conservation of flow yields
∑

(a1,a2)∈A?
1×A

?
2

ζ(a1, a2) =
∑

a1∈A1

exp(ε) · f (a1,?2) = exp(ε) · f (?2,⊥) = δ,

establishing the desired distance condition dε (µL ,µR)≤ δ.

The countable case

There are several possible approaches to generalize Theorem 5.1.4 to countable distributions. Perhaps the most
straightforward is to apply a version of the max flow-min cut theorem for countable graphs (Aharoni, Berger,
Georgakopoulos, Perlstein, and Sprüssel, 2011). Instead, we will give a more elementary proof. Besides being
self-contained, our proof also establishes limit and compactness properties of approximate couplings and their
witnesses, which may be of independent interest.

We first show that given a convergent sequence of pairs of distributions with an approximate lifting for each
pair, there is a sub-sequence of witnesses converging to witnesses of an approximate lifting for the limits. We then
generalize Theorem 5.1.4 to countable domains by viewing a distribution over a countable set as the pointwise
limit of distributions with finite support, using the finite case to build approximate liftings (and witnesses) for
each pair of finite restrictions

We will need a generalized version of the dominated convergence theorem.

Theorem 5.1.5 (see, e.g., Royden and Fitzpatrick (2010, Chapter 4, Theorem 19)). Let Ω be a measurable space
with measure µ. Let { fn} and {gn} be two sequences of measurable functions Ω→ R such that there exist functions
f , g : Ω→ R with

1. limn→∞ fn = f pointwise;

2. | fn| ≤ gn; and

3. limn→∞
∫

gn dµ=
∫

g dµ <∞.

Then we have

lim
n→∞

∫

fn dµ=

∫

f dµ.

Since we work with countable spaces, we take µ to be the discrete measure. In this case, the integrals are
simply plain sums. We will also need a lemma about witnesses to approximate liftings—roughly speaking, we may
assume the witnesses are within a purely multiplicative factor of each other except on pairs with ?.

Lemma 5.1.6. Suppose µ1,µ2 are sub-distributions over A1 and A2 such that

µ1 R](ε,δ) µ2.

Then there exists (ηL ,ηR) witnessing the approximate lifting with

ηR(a1, a2)≤ ηL(a1, a2)≤ exp(ε) ·ηR(a1, a2)

for all a1, a2 6= ?.

Proof. Let µL ,µR be witnesses. Define witnesses

ηL(a1, a2)¬











min(µL(a1, a2), exp(ε) ·µR(a1, a2)) : a1 6= ?, a2 6= ?
µ1(a1)−

∑

a′2∈A2
ηL(a1, a′2) : a1 6= ?, a2 = ?

0 : otherwise;
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ηR(a1, a2)¬











min(µL(a1, a2),µR(a1, a2)) : a1 6= ?, a2 6= ?
µ2(a2)−

∑

a′1∈A1
ηR(a′1, a2) : a1 = ?, a2 6= ?

0 : otherwise.

The marginal and support conditions follow from the respective conditions for (µL ,µR). Note that ηL and ηR are
non-negative by the marginal conditions for µL and µR. Furthermore for all (a1, a2) ∈A1 ×A2, we have

ηR(a1, a2)≤ ηL(a1, a2)≤ exp(ε) ·ηR(a1, a2).

It only remains to check the distance condition. Define non-negative constants

ζ(a1, a2)¬max(µL(a1, a2)− exp(ε) ·µR(a1, a2), 0).

Since dε (µL ,µR) ≤ δ, we know µL(a1, a2) ≤ exp(ε) · µR(a1, a2) + ζ(a1, a2) with equality when ζ(a1, a2) > 0,
and

∑

a1,a2∈A?
1×A

?
2
ζ(a1, a2) ≤ δ. Thus, ηL(a1, a2) = µL(a1, a2) − ζ(a1, a2) for every a1, a2 6= ?. Also, we know

ηL(a1, a2)≤ exp(ε) ·ηR(a1, a2). Thus for any subset S ⊆A?1 ×A?2, we have

ηL(S)≤ exp(ε) ·ηR(S ∩ (A1 ×A2)) +ηL(S ∩ (A1 × {?}))
≤ exp(ε) ·ηR(S ∩ (A1 ×A2)) +ηL(A1 × {?})

= exp(ε) ·ηR(S ∩ (A1 ×A2)) +
∑

a1∈A1

 

µ1(a1)−
∑

a2∈A2

µL(a1, a2)− ζ(a1, a2)

!

= exp(ε) ·ηR(S ∩ (A1 ×A2)) +
∑

a1∈A1

µL(a1,?) +
∑

(a1,a2)∈A1×A2

ζ(a1, a2)

= exp(ε) ·ηR(S ∩ (A1 ×A2)) +
∑

(a1,a2)∈A1×A?
2

ζ(a1, a2)

≤ exp(ε) ·ηR(S) +δ.

We are now ready to prove that a converging sequence of pairs of distributions related by approximate liftings
implies an approximate lifting for the limit distributions.

Lemma 5.1.7. Let R be a binary relation between countable sets A1,A2. Consider a sequence {(µ(n)1 ,µ(n)2 )}n∈N with
µ
(n)
1 ∈ SDistr(A1) and µ(n)2 ∈ SDistr(A2) such that there exists an approximate lifting for each n:

µ
(n)
1 R](εn,δn) µ

(n)
2 .

Suppose limn→∞(εn,δn) = (ε,δ) and {µ(n)1 }n, {µ(n)2 }n converge to µ1,µ2 under the L1 norm:

lim
n→∞

∑

ai∈Ai

�

�

�µ
(n)
i (ai)−µi(ai)

�

�

�= 0

for i = 1, 2. Then there exists an approximate lifting of the limit sub-distributions:

µ1 R](ε,δ) µ2.

Proof. Let (η(n)L ,η(n)R ) witness the approximate lifting of µ(n)1 and µ(n)2 , satisfying Lemma 5.1.6. Each witness

can be viewed as a map η(n)L ,η(n)R : A?1 × A?2 → [0,1]. Since A1 and A2 are countable and [0,1] is compact,
A?1 ×A?2→ [0, 1] is the countable product of compact sets and is itself (sequentially) compact. Hence, there exists
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a sub-sequence of indices {ωn}n such that η(ωn)
L ,η(ωn)

R both converge pointwise to sub-distributions (ηL ,ηR). (See
any real analysis textbook, e.g., Royden and Fitzpatrick (2010) for a discussion about sequential compactness.)

We claim these limit sub-distributions are the desired witnesses. It is clear that supp(ηL) and supp(ηR) are
contained in R. The marginal conditions are a bit trickier. Let a1 ∈A1 (the marginal for a1 = ? is clear), and let
εmax be an upper bound of the sequence {εn}n; since the sequence converges to ε, we may assume εmax is finite. By
Lemma 5.1.6 and the marginal condition on µ(ωn)

2 , the sequence {η(ωn)
L (a1,−)}n∈N is bounded by β (ωn)

L : A?2→ R,
where

β
(ωn)
L (a2)¬

¨

eεmaxµ
(ωn)
2 (a2) : if a2 6= ?

1 : if a2 = ?.

The sequence {β (ωn)
L }n converges under the L1 norm to βL : A?2→ R, where

βL(a2)¬

¨

eεmaxµ2(a2) : if a2 6= ?
1 : if a2 = ?.

Evidently
∑

a2∈A?
2
βL(a2) exists and is at most 1+ eεmax . Now for the first marginal,

π1(ηL)(a1) =
∑

a2∈A?
2

ηL(a1, a2) =
∑

a2∈A?
2

lim
n→∞

η
(ωn)
L (a1, a2)

= lim
n→∞

∑

a2∈A?
2

η
(ωn)
L (a1, a2) = lim

n→∞
π1(η

(ωn)
L )(a1)

= lim
n→∞

µ
(ωn)
1 (a1) = µ1(a1).

We can interchange the sum and the limit by the dominated convergence theorem with bounding functions β (ωn)
L

(Theorem 5.1.5).
For the second marginal, let a2 ∈ A2 (the marginal for a2 = ? is clear). By Lemma 5.1.6 and the marginal

condition on µ(ωn)
1 , the sequence {η(ωn)

R (−, a2)}n∈N is bounded by β (ωn)
R : A?1→ R, where

β
(ωn)
R (a1)¬

¨

µ
(ωn)
1 (a1) : if a1 6= ?

1 : if a1 = ?.

The sequence {β (ωn)
R }n converges under the L1 norm to βR : A?1→ R, where

βR(a1)¬

¨

µ1(a1) : if a1 6= ?
1 : if a1 = ?.

Evidently
∑

a1∈A?
1
βR(a1) exists and is at most 2. For the second marginal,

π2(ηR)(a2) =
∑

a1∈A?
1

ηR(a1, a2) =
∑

a1∈A?
1

lim
n→∞

η
(ωn)
R (a1, a2)

= lim
n→∞

∑

a1∈A?
1

η
(ωn)
R (a1, a2) = lim

n→∞
π2(η

(ωn)
R )(a2)

= lim
n→∞

µ
(ωn)
2 (a2) = µ2(a2).

As before, to interchange the sum and the limit we apply the dominated convergence theorem with bounding
functions β (ωn)

R (Theorem 5.1.5).
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The distance condition now follows by taking limits. For any subset S ⊆A?1 ×A?2, we have

ηL(S)− exp(ε) ·ηR(S) = lim
n→∞

η
(ωn)
L (S)− lim

n→∞
exp(εωn

) · lim
n→∞

η
(ωn)
R (S)

= lim
n→∞

�

η
(ωn)
L (S)− exp(εωn

) ·η(ωn)
R (S)

�

≤ lim
n→∞

δωn

= δ.

Finally, we obtain the countable version of Theorem 5.1.4.

Theorem 5.1.8. Let µ1 and µ2 be sub-distributions over countable sets A1 and A2, and let R ⊆A1 ×A2 be a binary
relation such that µ1(S1)≤ exp(ε) ·µ2(R(S1)) +δ for every S1 ⊆A1. Then there exists an approximate lifting

µ1 R](ε,δ) µ2.

Proof. Since A1 and A2 are countable, there are finite subsets I(n)1 ⊆A1,I(n)2 ⊆A2 such that {I(n)1 }n and {I(n)2 }n
are increasing with ∪nI

(n)
1 =A1 and ∪nI

(n)
2 =A2. Consider the sequences of restricted sub-distributions

µ
(n)
1 (a1)¬

¨

µ1(a1) : a1 ∈ I(n)1

0 : otherwise
µ
(n)
2 (a2)¬

¨

µ2(a2) : a2 ∈ I(n)2

0 : otherwise.

For any subset S1 ⊆A1, by assumption

µ1(S1)≤ exp(ε) ·µ2(R(S1)) +δ.

On the restricted sub-distributions, we have

µ
(n)
1 (S1)≤ µ1(S1)≤ exp(ε) ·µ2(R(S1)∩ I

(n)
2 ) + exp(ε) ·µ2(A2 \ I

(n)
2 ) +δ

¬ exp(ε) ·µ(n)2 (R(S1)) +δn.

Evidently limn→∞ δn = δ. Since µ(n)1 and µ(n)2 have finite support contained in I(n)1 and I(n)2 , Theorem 5.1.4 gives
an approximate lifting for each finite restriction:

µ
(n)
1 R](ε,δn) µ

(n)
2 .

Since µ(n)1 and µ(n)2 converge in L1 to µ1 and µ2, we can conclude by Lemma 5.1.7.

Alternative proofs of coupling constructions

The equivalence from Theorems 5.1.2 and 5.1.8 gives a convenient way to construct approximate couplings. For
instance, we can easily prove a transitivity principle.

Lemma 5.1.9. Let µ1,µ2,µ3 be sub-distributions over A1,A2,A3 respectively, and let R ⊆A1×A2 and S ⊆A2×A3
be binary relations. If we have

µ1 R](ε,δ) µ2 and µ2 S](ε
′,δ′) µ3,

then we also have
µ1 (S ◦R)

](ε+ε′,exp(ε′)δ+δ′) µ3.
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Proof. Let T1 ⊆A1 be any subset. By Theorem 5.1.2 we have

µ1(T1)≤ exp(ε)µ2(R(T1)) +δ
µ2(R(T1))≤ exp(ε′)µ3((S ◦R)(T1)) +δ

′.

Chaining the inequalities and applying Theorem 5.1.8 yields the desired approximate lifting.

We can also give alternative proofs for the couplings from Chapter 4.

Theorem 4.2.7. Let µ1 and µ2 be sub-distributions over A1 and A2. If we have functions fi : Ai → Bi for i ∈ {1, 2},
and a relation R ⊆ B1 ×B2, then

µ1 {(a1, a2) ∈A1 ×A2 | f1(a1)R f2(a2)}
](ε,δ) µ2

if and only if
f ]1 (µ1) {(b1, b2) ∈ B1 ×B2 | b1 R b2}

](ε,δ) f ]2 (µ2).

(Recall f : A→ B can be lifted to a map f ] : SDistr(A)→ SDistr(B) on sub-distributions.)

Proof (alternative). For the forward direction, let T1 ⊆ B1 be any subset. Then

f ]1 (µ1)(T1) = µ1( f
−1

1 (T1))

≤ exp(ε) ·µ2( f
−1

2 (R(T1))) +δ (Theorem 5.1.2)

= exp(ε) · f ]2 (µ2)(R(T1)) +δ,

so we conclude by Theorem 5.1.8. For the reverse direction, let S1 ⊆A1 be any subset. Then

µ1(S1)≤ µ1( f
−1

1 ( f1(S1)))

= f ]1 (µ1)( f1(S1))

≤ exp(ε) · f ]2 (µ2)(R( f1(S1))) +δ (Theorem 5.1.2)

= exp(ε) ·µ2( f
−1

2 (R( f1(S1)))) +δ.

Since f1(x1)R f2(x2) precisely when x1 ( f −1
2 ◦R ◦ f1) x2, we conclude by Theorem 5.1.8.

Proposition 4.5.1. Let v1, v2 ∈ Z. Then:

Lapε(v1) {(x1, x2) | x1 − v1 = x2 − v2}
](0,0) Lapε(v2).

Proof (alternative). Let S ⊆ Z be any subset and let S ′ be the set {s − v1 + v2 | s ∈ S}. Noting Lapε(v1)(s) =
Lapε(v2)(s− v1 + v2) for every s and summing over all s ∈ S, we have

Lapε(v1)(S) = Lapε(v2)(S ′).

Theorem 5.1.8 gives the desired approximate coupling.

Proposition 4.5.3. Let k, k′, v1, v2 ∈ Z, and suppose |k+ v1 − v2| ≤ k′. Then:

Lapε(v1) {(x1, x2) | x1 + k = x2}
](k′ε,0) Lapε(v2).
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Proof (alternative). Let S ⊆ Z be any subset and let S ′ be the set {s+ k | s ∈ S}. Noting

Lapε(v1)(s) = Lapε(v2)(s− v1 + v2)
≤ exp(|k− v2 + v1|ε) · Lapε(v2)(s+ k)
≤ exp(k′ε) · Lapε(v2)(s+ k)

for every s and summing over all s ∈ S, we have

Lapε(v1)(S) = exp(k′ε) · Lapε(v2)(S ′).

Theorem 5.1.8 gives the desired approximate coupling.

Proposition 4.6.1. Let µ1,µ2 be sub-distributions over R and suppose for every i ∈R, we have

µ1 {(r1, r2) | r1 = i→ r2 = i}](ε,δi) µ2

for non-negative ε and {δi}i∈R. Then we have

µ1 (=)
](ε,δ) µ2

where δ =
∑

i∈R δi .

Proof (alternative). By Theorem 5.1.2 we have µ1(i)≤ exp(ε) ·µ2(i)+δi for every i ∈R. Hence for any set S ⊆R,
summing over i ∈ S gives

µ1(S)≤ exp(ε) ·µ2(S) +
∑

i∈S

δi ≤ exp(ε) ·µ2(S) +δ.

Theorem 5.1.8 gives the desired approximate coupling.

For the couplings we introduce in the rest of this chapter, we will give each construction in two ways: first as a
consequence of Sato’s definition, then in terms of two explicit witness distributions.

5.2 Accuracy-dependent approximate couplings

A common technique in proofs for cryptographic protocols is up-to-bad reasoning. Roughly, two versions of a
protocol—say, one that operates on the true secret information and one that operates on random noise—are said
to be equivalent up-to-bad if they have the same distribution over outputs assuming some probabilistic event, the
so-called bad event, does not happen. If the bad event has small probability, up-to-bad equivalence implies that the
output distributions of the two programs are close. This principle can be seen as a property about exact couplings,
a consequence of the coupling method (Theorem 2.1.16).

Proposition 5.2.1. Let µ1,µ2 be sub-distributions over A and let P ⊆ A be a subset. If for i ∈ {1,2} we have an
exact lifting

µ1 {(x1, x2) | x i ∈ P → x1 = x2}] µ2,

then dtv (µ1,µ2)≤ µi(A \P).

Proof. Let µ be the witness. We have

dtv (µ1,µ2)≤ Pr
(x1,x2)∼µ

[x1 6= x2] = Pr
(x1,x2)∼µ

[x1 6= x2 ∧ x i /∈ P]≤ µi(A \P),

by Theorem 2.1.16, the support condition, and the first marginal condition.
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Up-to-bad approximate couplings

The δ parameter of an approximate coupling is closely related to TV-distance. For example, the distance bound
d0 (µ1,µ2) ≤ δ is equivalent to dtv (µ1,µ2) ≤ δ for proper distributions. This observation suggests we can
generalize Proposition 5.2.1 to approximate couplings. We introduce two constructions, which we call up-to-bad
approximate couplings.

Proposition 5.2.2. Let µ1,µ2 be sub-distributions over A1 and A2, and let P1,P2 be subsets of A1 and A2. Consider
any binary relation R ⊆A1 ×A2.

1. If µ1(A1 \P1)≤ δ′, then

µ1 {(a1, a2) | a1 ∈ P1→ (a1, a2) ∈R}](ε,δ) µ2 implies µ1 R](ε,δ+δ
′) µ2.

2. If µ2(A2 \P2)≤ δ′, then

µ1 {(a1, a2) | a2 ∈ P2→ (a1, a2) ∈R}](ε,δ) µ2 implies µ1 R](ε,δ+exp(ε)·δ′) µ2.

The slight difference between the two versions is due to our asymmetric definition of approximate coupling;
bad events in µ1 are not treated the same as bad events in µ2.

Proof. We first introduce some notation for binary relations and sets. First, we will interpret P1 and P2 as subsets
of A1 ×A2 via P1 ×A2 and A1 ×P2. If R is a binary relation over B1 ×B2, we write ¬R for the binary relation
B1 ×B2 \R. Finally, we write A→ B for the binary relation ¬B ∪A.

To prove the first point, let S1 ⊆A1 be any subset. By assumption and Theorem 5.1.2,

µ1(S1 ∩P1)≤ exp(ε) ·µ2((P1→R)(S1 ∩P1)) +δ = exp(ε) ·µ2(R(S1 ∩P1)) +δ.

Since µ1(¬P1)≤ δ′, we also have

µ1(S1)≤ µ1(S1 ∩P1) +δ
′ ≤ exp(ε) ·µ2(R(S1 ∩P1)) +δ+δ

′ ≤ exp(ε) ·µ2(R(S1)) +δ+δ
′

and hence Theorem 5.1.8 gives the desired approximate coupling.
The second point is similar. Let S1 ⊆A1 be any subset. By assumption and Theorem 5.1.2,

µ1(S1)≤ exp(ε) ·µ2((P2→R)(S1)) +δ
≤ exp(ε) ·µ2(¬P2) + exp(ε) ·µ2(R(S1)) +δ
≤ exp(ε) ·µ2(R(S1)) +δ+ exp(ε) ·δ′

and hence Theorem 5.1.8 gives the desired approximate coupling.

To give witnesses for the first point, let µL ,µR witness the approximate lifting of P1 → R. We define two
witnesses ηL ,ηR ∈ SDistr(A?1 ×A?2) for the approximate lifting of R:

ηL(a1, a2)¬







µL(a1, a2) : (a1, a2) ∈R
µL(a1,?) +

∑

a2∈A2:(a1,a2)/∈R
µL(a1, a2) : a2 = ?

0 : otherwise.

ηR(a1, a2)¬











µR(a1, a2) : (a1, a2) ∈R
µR(?, a2) +

∑

a′1∈A1:(a′1,a2)/∈R
µR(a′1, a2) : a1 = ?

0 : otherwise.
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By construction, supp(ηL)∪ supp(ηR) ⊆R?. We can check the first marginal condition:

π1(ηL)(a1) =
∑

a2∈A?
2

ηL(a1, a2)

= ηL(a1,?) +
∑

a2∈A2:(a1,a2)∈R

ηL(a1, a2)

= µL(a1,?) +
∑

a2∈A2:(a1,a2)/∈R

µL(a1, a2) +
∑

a2∈A2:(a1,a2)∈R

µL(a1, a2)

=
∑

a2∈A?
2

µL(a1, a2) = π1(µL)(a1).

The second marginal is similar:

π2(ηR)(a2) =
∑

a1∈A?
1

ηR(a1, a2)

= ηR(?, a2) +
∑

a1∈A1:(a1,a2)∈R

ηR(a1, a2)

= µR(?, a2) +
∑

a1∈A1:(a1,a2)/∈R

µR(a1, a2) +
∑

a1∈A1:(a1,a2)∈R

µR(a1, a2)

=
∑

a1∈A?
1

µR(a1, a2) = π2(µR)(a2).

It remains to check the distance condition. Compared to the old witnesses, the new witnesses have larger mass on
subsets satisfying R?: for all subsets S ⊆R?, we have µL(S)≤ ηL(S) and µR(S)≤ ηR(S). For any set S ⊆A?1×A

?
2,

we can also bound ηL(S) from above:

ηL(S) =
∑

(a1,a2)∈S∩R?

ηL(a1, a2)

=
∑

(a1,a2)∈S∩R

ηL(a1, a2) +
∑

(a1,?)∈S

ηL(a1,?)

=
∑

(a1,a2)∈S∩R

µL(a1, a2) +
∑

(a1,?)∈S

 

µL(a1,?) +
∑

a2∈A2:(a1,a2)/∈R

µL(a1, a2)

!

≤
∑

(a1,a2)∈S

µL(a1, a2) +
∑

a1∈A1\P1

∑

a2∈A?
2

µL(a1, a2)

=
∑

(a1,a2)∈S

µL(a1, a2) +µ1(¬P1)

≤ µL(S) +δ′.

The first inequality uses the support of µL; the final inequality is by assumption. Finally, we chain these bounds:

ηL(S) = ηL(S ∩R?)
≤ µL(S ∩R?) +δ′

≤ exp(ε) ·µR(S ∩R?) +δ+δ′

≤ exp(ε) ·ηR(S ∩R?) +δ+δ′

= exp(ε) ·ηR(S) +δ+δ′.
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UTB-L

` c1 ∼(ε,δ) c2 : Φ=⇒ Θ〈1〉 → Ψ ∀m, |= Pr
¹c1ºm

[¬Θ]≤ δ′

` c1 ∼(ε,δ+δ′) c2 : Φ=⇒ Ψ

UTB-R

` c1 ∼(ε,δ) c2 : Φ=⇒ Θ〈2〉 → Ψ ∀m, |= Pr
¹c2ºm

[¬Θ]≤ δ′

` c1 ∼(ε,δ+exp(ε)·δ′) c2 : Φ=⇒ Ψ

Figure 5.1: Up-to-bad rules for APRHL

This implies dε (ηL ,ηR)≤ δ+δ′, so ηL and ηR witness the approximate lifting.
To give witnesses for the second point, let ηL ,ηR be defined as above and consider any subset S ⊆A?1 ×A?2.

The marginal and support conditions follow as before. To check the distance condition, we first bound ηL in terms
of µL:

ηL(S) =
∑

(a1,a2)∈S

ηL(a1, a2)

≤
∑

(a1,a2)∈S∩R?

µL(a1, a2) +
∑

(a1,a2)/∈R

µL(a1, a2)

= µL(S ∩R?) +µL(¬R)
= µL((S ∩R?)∪¬R)

The last equality is because the two events are disjoint. We then complete the calculation as before:

ηL(S)≤ µL((S ∩R?)∪¬R)
≤ exp(ε) ·µR((S ∩R?)∪¬R) +δ
≤ exp(ε)(µR(S ∩R?) +µR(¬P2)) +δ
= exp(ε)(µR(S ∩R?) +µR(¬P2)) +δ
≤ exp(ε)(µR(S ∩R?) +δ′) +δ
≤ exp(ε)(ηR(S ∩R?) +δ′) +δ
= exp(ε) ·ηR(S) +δ+ exp(ε) ·δ′.

Thus dε (ηL ,ηR)≤ δ+ exp(ε) ·δ′, so (ηL ,ηR) witness the desired approximate coupling.

We realize these couplings in APRHL with the up-to-bad rules in Fig. 5.1. In both rules, Θ is a predicate on
State; Θ〈1〉 and Θ〈2〉 are the associated predicates on the product memories State×; syntactically, where all
variables in Θ are tagged with 〈1〉 or 〈2〉 respectively.

Theorem 5.2.3. The rules [UTB-L] and [UTB-R] are sound.

Proof. By validity of the premises and Proposition 5.2.2.

Figure 5.2 presents two useful variants of the up-to-bad rules that are restricted versions of the rule of
conjunction from Hoare logic. As we discussed before, the general conjunction rule is not sound in PRHL, nor in
APRHL. However if one of the conjuncts mentions only one side, we can recover a version of the conjunction rule.

Corollary 5.2.4. The rules [AND-L] and [AND-R] are sound.
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AND-L

` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ ∀m, |= Pr
¹c1ºm

[¬Θ]≤ δ′

` c1 ∼(ε,δ+δ′) c2 : Φ=⇒ Θ〈1〉 ∧Ψ

AND-R

` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ ∀m, |= Pr
¹c2ºm

[¬Θ]≤ δ′

` c1 ∼(ε,δ+exp(ε)·δ′) c2 : Φ=⇒ Θ〈2〉 ∧Ψ

Figure 5.2: One-sided conjunction rules for APRHL

LAPACC-L
` x1

$← Lapε(e1)∼(ε,δ) c2 : Φ=⇒ Ψ x1 /∈ FV(e1)

` x1
$← Lapε(e1)∼(ε,δ+β) c2 : Φ=⇒ |x1〈1〉 − e1〈1〉| ≤

1
ε

ln
1
β
∧Ψ

LAPACC-R
` c1 ∼(ε,δ) x2

$← Lapε(e2) : Φ=⇒ Ψ x2 /∈ FV(e2)

` c1 ∼(ε,δ+exp(ε)·β) x2
$← Lapε(e2) : Φ=⇒ |x2〈2〉 − e2〈2〉| ≤

1
ε

ln
1
β
∧Ψ

Figure 5.3: Laplace accuracy bounds in APRHL

Proof. From the premise of [AND-L], the rule of consequence gives

` c1 ∼(ε,δ) c2 : Φ=⇒ Θ〈1〉 → Θ〈1〉 ∧Ψ

and hence we can conclude by applying [UTB-L]:

` c1 ∼(ε,δ+δ′) c2 : Φ=⇒ Θ〈1〉 ∧Ψ.

Similarly, we can derive [AND-R] from [UTB-R].

When δ′ = 0, the rules [AND-L] and [AND-R] can add one-sided support assertions to the post-condition of any
APRHL rule. This can be useful to work around the narrow post-conditions in certain APRHL rules (e.g., [PW-EQ]).
We can also use these rules to introduce accuracy bounds. As an example, we give a basic tail bound for the
discrete Laplace distribution.

Proposition 5.2.5. Let ε,β > 0 and let t ∈ Z. Then we can bound the probability of samples from the Laplace
distribution being far from the mean:

Pr
x∼Lapε(t)

�

|x − t|>
1
ε

ln
1
β

�

≤ β .

This bound gives the two rules in Fig. 5.3.

Corollary 5.2.6. The rules [LAPACC-L] and [LAPACC-R] are sound.

Proof. By the rules [AND-L], [AND-R], and Proposition 5.2.5.
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5.3 Optimal subset coupling

By Proposition 4.2.4, approximate lifted implication

µ1 {(a1, a2) | a1 ∈ S1→ a2 ∈ S2}
](ε,δ) µ2

ensures µ1(S1)≤ exp(ε) ·µ2(S2) +δ. In this section, we explore a partial converse.

Theorem 5.3.1 (Optimal subset coupling). Let α≥ 1 and δ ≥ 0. Let µ1 and µ2 be sub-distributions over A1 and
A2 with equal weight, and consider subsets S1 ⊆ A1,S2 ⊆ A2. Then µ1(S1) ≤ αµ2(S2) + δ and µ1(A1 \ S1) ≤
αµ2(A2 \ S2) +δ if and only if

µ1 {(a1, a2) | a1 ∈ S1↔ a2 ∈ S2}
](lnα,δ) µ2.

The equivalence shows that approximate couplings can capture the bounds µ1(S1) ≤ αµ2(S2) + δ and
µ1(A1 \S1)≤ αµ2(A2 \S2) +δ with the most precise approximation parameters, much like the maximal coupling
can precisely model the TV-distance between two distributions.

Proof. The reverse direction follows by Theorem 5.1.2. For the forward implication, take any set T1 ⊆ A1 and
write R for the relation {(a1, a2) | a1 ∈ S1 ↔ a2 ∈ S2}. If T1 ∩ S1 and T1 ∩ (A1 \ S1) are both non-empty, then
R(T1) =A2 and then clearly µ1(T1)≤ αµ2(R(T1))+δ as µ1 and µ2 have equal weights. Otherwise T1 is contained
in S1 or in A1 \ S1. In the first case, R(T1) = S2 and so

µ1(T1)≤ µ1(S1)≤ αµ2(S2) +δ = αµ2(R(T1)) +δ

by assumption. In the second case, R(T1) =A2 \ S2 and we again have µ1(T1)≤ µ2(R(T1)) +δ. Hence we have
the desired approximate coupling by Theorem 5.1.8.

Alternatively, we can directly construct two witnesses. For simplicity we consider just the case δ = 0. Define:

µL(a1, a2)¬











µ1(a1)·µ2(a2)
µ2(S2)

: if a1 ∈ S1 and a2 ∈ S2
µ1(a1)·µ2(a2)
µ2(A2\S2)

: if a1 /∈ S?1 and a2 /∈ S?2
0 : otherwise.

µR(a1, a2)¬



















µ1(a1)·µ2(a2)
µ1(S1)

: if a1 ∈ S1 and a2 ∈ S2
µ1(a1)·µ2(a2)
µ1(A1\S1)

: if a1 /∈ S?1 and a2 /∈ S?2
µ2(a2)−

∑

a′1∈A1
µR(a′1, a2) : if a1 = ?

0 : otherwise.

When any denominator is zero, we treat the fraction as zero. It is not hard to see that the support conditions
are satisfied. To show the marginal conditions, there are a few cases. Consider the first marginal π1(µL)(a1).
For a1 ∈ S1, if µ2(S2) = 0 then µ1(S1) = 0 by assumption; if µ1(S2)> 0 then the marginal is clear. Likewise for
a1 /∈ S?1 , if µ2(A2 \ S2) = 0 then µ1(A1 \ S1) = 0 by assumption and π1(µL)(a1) = 0; if µ2(A2 \ S2)> 0 then the
marginal is clear. The second marginal π2(µR) = µ2 holds by construction, after checking µR(?, a2)≥ 0.

Finally for the distance condition, µL(a1, a2) ≤ αµR(a1, a2) by the first assumption when (a1, a2) ∈ S1 × S2;
by the second assumption when (a1, a2) ∈ (A1 \ S1)× (A2 \ S2); and trivially in all other cases since µL(a1, a2) =
µR(a1, a2) = 0. Hence we have a (lnα, 0)-approximate coupling.

A useful special case is when the distributions are equal and the subsets are nested.

Corollary 5.3.2 (Optimal subset coupling). Let µ be a sub-distribution over A and consider nested sets S2 ⊆ S1 ⊆A.
Then µ(S1)≤ αµ(S2) +δ if and only if

µ {(a1, a2) | a1 ∈ S1↔ a2 ∈ S2}
](lnα,δ) µ.
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Proof. By Theorem 5.3.1; the requirement µ(A \ S1)≤ αµ(A \ S2) +δ is automatic since S2 ⊆ S1.

As an application, we give a subset coupling for the Laplace distribution. First, we prove a bound relating
the probabilities of two nested intervals for the Laplace distribution. A similar bound for the continuous Laplace
distribution was originally proved by Bun et al. (2017); we adapt their proof to the discrete case.

Proposition 5.3.3. Let a, a′, b, b′ ∈ Z be such that a < b and [a, b] ⊆ [a′, b′]. Then

Pr
r∼Lapε

[r ∈ [a′, b′]]≤ α Pr
r∼Lapε

[r ∈ [a, b]]

with constants

α¬
exp(ηε)

1− exp(−(b− a+ 2)ε/2)
and η¬ (b′ − a′)− (b− a).

Proof. Let W be the total mass of the Laplace distribution before normalization. By a calculation,

W =
+∞
∑

r=−∞
exp(−|r|ε) =

eε + 1
eε − 1

.

Let L(x , y) be the mass of the Laplace distribution in [x , y]. We want to bound L(a′, b′)≤ αL(a, b). There are
four cases: a < b ≤ 0, a < 0 < b with |a| ≤ |b|, 0 ≤ a < b, and a < 0 < b with |a| ≥ |b|. By symmetry of the
Laplace distribution, it suffices to consider the first two cases.

For the first case, a < b ≤ 0. By direct calculation, we have

L(a′, b′)≤ L(a, b) +
1
W

b+η
∑

r=b+1

erε

=
e(b+1+η)ε − eaε

eε + 1

=
1

eε + 1
(e(b+1)ε − eaε)

�

eηε − e−(b−a+1)ε

1− e−(b−a+1)ε

�

=

�

eηε − e−(b−a+1)ε

1− e−(b−a+1)ε

�

L(a, b)≤ αL(a, b).

For the second case, a < 0< b with |a| ≤ |b|. We can bound

L(a′, b′)≤ L(a, b) +ηL(a, a) = L(a, b) +η
�

eε − 1
eε + 1

�

eaε

≤
�

1+η
�

eε − 1
eε + 1

�

eaε

L(0, b)

�

L(a, b)

=
�

1+
η(eε − 1)eaε

eε − e−bε

�

L(a, b)

=

�

1− e−(b+1)ε +η(eε − 1)e(a−1)ε

1− e−(b+1)ε

�

L(a, b)

≤
�

1+η(eε − 1)
1− e−(b+1)ε

�

L(a, b)

≤
�

e2ηε

1− e−(b−a+2)ε/2

�

L(a, b)≤ αL(a, b).
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LAPINT

ε′ ¬ ln
�

exp(ηε)
1− exp(−σε/2)

�

x1, x2 /∈ FV(p, q, r, s, e1, e2)

Φ¬







|e1〈1〉 − e2〈2〉| ≤ k
p+ k ≤ r < s ≤ q− k ∧ (q− p)− (s− r)≤ η∧ 0< σ ≤ (s− r) + 2

∀w1, w2 ∈ Z, (w1 ∈ [p, q]↔ w2 ∈ [r, s])→ Ψ {w1, w2/x1〈1〉, x2〈2〉}

` x1
$← Lapε(e1)∼(ε′,0) x2

$← Lapε(e2) : Φ=⇒ Ψ

Figure 5.4: Interval coupling rule [LAPINT] for APRHL

The last line is because (b+ 1)≥ (b− a+ 2)/2, and because 1+η(eε − 1)≤ eηε for η ∈ N and ε ≥ 0; to see this,
note that equality holds at η= 0 and

1+ (η+ 1)(eε − 1)
1+η(eε − 1)

≤
e(η+1)ε

eηε
= eε

for ε ≥ 0, so the inequality is preserved as we increase η.

As a corollary, we have a subset coupling for the Laplace distribution.

Lemma 5.3.4. Let a, a′, b, b′ ∈ Z be such that a < b and [a, b] ⊆ [a′, b′]. We have an approximate lifting

Lapε {(r1, r2) | r1 ∈ [a′, b′]↔ r2 ∈ [a, b]}](lnα,0) Lapε

with constants

α¬
exp(ηε)

1− exp(−(b− a+ 2)ε/2)
and η¬ (b′ − a′)− (b− a).

Proof. Immediate by the forward direction of Corollary 5.3.2 and Proposition 5.3.3.

To use this coupling in APRHL, we introduce the rule [LAPINT] in Fig. 5.4. To gain intuition, the following rule
is a simplified special case:

LAPINT*

ε′ ¬ ln
�

exp(ηε)
1− exp(−σε/2)

�

x /∈ FV(p, q, r, s) |= Φ→















|e〈1〉 − e〈2〉| ≤ k
p+ k ≤ r < s ≤ q− k
(q− p)− (s− r)≤ η
0< σ ≤ (s− r) + 2

` x $← Lapε(e)∼(ε′,0) x $← Lapε(e) : Φ=⇒ x〈1〉 ∈ [p, q]↔ x〈2〉 ∈ [r, s]

Ignoring the technical side-conditions, this rule gives an approximate coupling relating the samples in [p, q] in
the first distribution with the samples in [r, s] in the second distribution. The general rule [LAPINT] can prove
post-conditions of any shape.

Theorem 5.3.5. The rule [LAPINT] is sound.

Proof. We leave the logical context ρ implicit. Let V ¬ X \ {x1, x2} be the non-sampled variables; we write m[V ]
for the restriction of a memory m to variables in V . Consider two memories m1, m2 and let the means v1 ¬ ¹e1ºm1
and v2 ¬ ¹e2ºm2 satisfy |v1 − v2| ≤ k. By the free variable condition, the expressions p, q, r, s are preserved by the
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command so we will abuse notation and treat p, q, r, s as integer constants satisfying the pre-condition Φ. Let the
output distributions be

µ1 ¬ ¹x1
$← Lapε(e1)ºm1 and µ2 ¬ ¹x2

$← Lapε(e2)ºm2.

We construct an approximate coupling of µ1 and µ2. Define the intervals

I1 ¬ [p− v1, q− v1] and I2 ¬ [r − v2, s− v2].

Since p+ k ≤ r and s ≤ q− k and |v1 − v2| ≤ k, we know I2 ⊆ I1. Lemma 5.3.4 gives

Lapε {(r1, r2) | r1 ∈ [p− v1, q− v1]↔ r2 ∈ [r − v2, s− v2]}
](lnα,0) Lapε

with constants

α¬
exp(ηε)

1− exp(−(s− r + 2)ε/2)
and η¬ (q− p)− (s− r).

Since 0< σ ≤ (s− r + 2), we have lnα≤ ε′ for

ε′ ¬ ln
�

exp(ηε)
1− exp(−σε/2)

�

.

Proposition 5.3.3 yields an approximate coupling

Lapε {(r1, r2) | r1 ∈ [p− v1, q− v1]↔ r2 ∈ [r − v2, s− v2]}
](ε′,0) Lapε.

Rearranging, this is equivalent to

Lapε {(r1, r2) | r1 + v1 ∈ [p, q]↔ r2 + v2 ∈ [r, s]}](ε
′,0) Lapε.

Applying Theorem 4.2.7 with f1, f2 mapping r to r + v1, r + v2 respectively, we obtain

f ]1 (Lapε) {(w1, w2) | w1 ∈ [p, q]↔ w2 ∈ [r, s]}](ε
′,0) f ]2 (Lapε).

Now since f ]1 (Lapε) = Lapε(v1) and f ]2 (Lapε) = Lapε(v2), we have

Lapε(v1) {(w1, w2) | w1 ∈ [p, q]↔ w2 ∈ [r, s]}](ε
′,0) Lapε(v2).

Applying Theorem 4.2.7 with maps ¹x1º and ¹x2º, we get

µ1 ¹x1〈1〉 ∈ [p, q]↔ x2〈2〉 ∈ [r, s]º](ε
′,0) µ2.

By the free variable condition, m′1[V ] = m1[V ] and m′2[V ] = m2[V ] for all memories m′1 ∈ supp(µ1) and
m′2 ∈ supp(µ2), so we may assume by Proposition 4.2.6 that the witnesses are supported on such memories. Hence,
we have witnesses to

µ1 {(m′1, m′2) | m
′
1[V ] = m1[V ], m′2[V ] = m2[V ], m′1(x1) ∈ [p, q]↔ m′2(x2) ∈ [r, s]}](ε

′,0)
µ2.

By the pre-condition, (m1, m2) satisfy

∀w1, w2 ∈ Z, w1 ∈ [p, q]↔ w2 ∈ [r, s]→ Ψ {w1, w2/x1〈1〉, x2〈2〉}

and so
µ1 Ψ

](ε′,0) µ2,

showing [LAPINT] is sound.
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5.4 Advanced coupling composition

The sequencing rule [SEQ] in APRHL composes two approximate couplings while summing the approximation
parameters; this rule is a generalization of the standard composition theorem of differential privacy (Theorem 4.1.4).
In this section we extend the advanced composition theorem of differential privacy, Theorem 4.1.5, which allows
trading off the ε and δ parameters when analyzing a composition of private mechanisms.

While the proof of the sequential composition theorem is fairly straightforward, the advanced composition
theorem follows from a more technical argument using Azuma’s inequality. It is not obvious how to extend the
proof to approximate liftings, but fortunately we don’t need to. The key observation is that the ε-distance condition
on witnesses ensures differential privacy generalized to distributions over pairs of outputs. Therefore, we can
directly generalize the advanced composition theorem to liftings by viewing the function mapping a pair of inputs
to the left/right witness as itself differentially private.

However, there is an important catch: the advanced composition theorem assumes a symmetric adjacency
relation. In particular, the witnesses must satisfy a two-sided, symmetric distance bound to compose, but
approximate lifting only gives a one-sided bound for witnesses. So, we first introduce a symmetric version of
approximate lifting where the witnesses satisfy the bound in both directions. Then we develop an advanced
composition theorem for symmetric liftings in two stages. First we prove an advanced composition theorem
for ε-distance, showing how to control the distance between the output distributions of two compositions if we
can bound the symmetric distance between the output distributions of each step. Then, we give an advanced
composition theorem given a symmetric approximate lifting at each step of a composition. To apply this principle in
APRHL, we introduce a symmetric judgment in APRHL and show how to prove it from standard APRHL judgments,
and we internalize advanced composition in a loop rule for symmetric judgments.

Remark 5.4.1. The advanced composition theorem from differential privacy implicitly assumes that all mechanisms
terminate with probability 1, so in this section we assume all commands are lossless; this is not a serious restriction
as derivable judgments in APRHL only relate lossless programs (Lemma 4.3.3).

Remark 5.4.2. While we focus on the advanced composition theorem, our technique provides a simple route to
generalize other sequential composition theorems, like the optimal composition theorem and the heterogeneous
composition theorem (Kairouz, Oh, and Viswanath, 2017), and composition theorems where the parameters can
be selected adaptively (Rogers, Vadhan, Roth, and Ullman, 2016).

Symmetric approximate liftings

We first introduce a symmetric version of approximate lifting.

Definition 5.4.3. Let µ1,µ2 be sub-distributions over A1 and A2, and let R ⊆A1 ×A2 be a relation. Let ? be an
element disjoint from A1 and A2. Two sub-distributions µL ,µR over pairs A?1 ×A?2 are witnesses for the symmetric
(ε,δ)-approximate R-lifting of (µ1,µ2) if:

1. π1(µL) = µ1 and π2(µR) = µ2;

2. supp(µL)∪ supp(µR) ⊆R?; and

3. dε (µL ,µR)≤ δ and dε (µR,µL)≤ δ.

(Recall S? is the set S ∪{?}, and R? is the relation R∪ (A1×{?})∪ ({?}×A2).) When the particular witnesses are
not important, we say µ1 and µ2 are related by the symmetric (ε,δ)-lifting of R, denoted

µ1 R
](ε,δ)

µ2.

R need not be symmetric—in fact, A1 and A2 may be different sets.
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This definition is nearly identical to standard approximate liftings (Definition 4.2.2) except it requires the
distance bound in both directions. The two-sided bound in a symmetric lifting implies two standard approximate

liftings: if µ1 R
](ε,δ)

µ2 holds, then µ1 R](ε,δ) µ2 and µ2 (R−1)](ε,δ) µ1 both hold by taking witnesses (µL ,µR) and
(µ>R ,µ>L ) respectively, since dε

�

µ>R ,µ>L
�

= dε (µR,µL). In general, the converse may not be true. However when
the relation R is of a particular form, we can construct a symmetric approximate lifting by giving two approximate
liftings.

Lemma 5.4.4. Suppose S1,S2 are subsets of A1,A2 respectively, and we have maps f1 : A1 → B and f2 : A2 → B.
Define a relation R on A1 ×A2 by

a1 R a2 ⇐⇒ a1 ∈ S1 ∧ a2 ∈ S2 ∧ f1(a1) = f2(a2).

Let µ1,µ2 be sub-distributions over A1 and A2. The approximate liftings

µ1 R](ε,δ) µ2 and µ2 (R−1)](ε,δ) µ1,

imply the symmetric approximate lifting

µ1 R
](ε,δ)

µ2.

Proof. Let (µL ,µR) witness µ1 R](ε,δ) µ2 and let (νL ,νR) witness µ2 (R−1)](ε,δ) µ1. For every b ∈ B, define subsets
[b]A1

¬ f −1
1 (b) ⊆A1 and [b]A2

¬ f −1
2 (b) ⊆A2 partitioning A1 and A2. First, we have

µ1([b]A1
) = µL([b]A1

×A?2)

≤ exp(ε) ·µR([b]A1
×A?2) +δ

= exp(ε) ·µR([b]A1
× [b]A2

) +δ

≤ exp(ε) ·µR(A?1 × [b]A2
) +δ

= exp(ε) ·µ2([b]A2
) +δ.

Define non-negative constants:

ρ(b)¬max(µ1([b]A1
)− exp(ε) ·µ2([b]A2

), 0).

Then
µ1([b]A1

)≤ exp(ε) ·µ2([b]A2
) +ρ(b),

with equality if ρ(b)> 0. It is not hard to show
∑

b∈B ρ(b)≤ δ; let B′ ¬ {b ∈ B | ρ(b)> 0}. Then

µ1(∪b∈B′[b]A1
) = exp(ε) ·µ2(∪b∈B′[b]A2

) +
∑

b∈B′
ρ(b),

but Theorem 5.1.2 bounds the left side:

µ1(∪b∈B′[b]A1
)≤ exp(ε) ·µ2(∪b∈B′[b]A2

) +δ.

By a similar calculation with (νL ,νR) in place of (µL ,µR), we have a symmetric bound µ2([b]A2
) ≤ exp(ε) ·

µ1([b]A1
) +σ(b) for minimal non-negative constants σ(b) such that

∑

b∈Bσ(b)≤ δ. Note that ρ(b) and σ(b)
can’t both be strictly positive, by minimality. We define witnesses

ηL(a1, a2)¬











µ1(a1)·µ2(a2)
µ2([b]A2

)

�

1− ρ(b)
µ1([b]A1

)

�

: f1(a1) = f2(a2) = b
µ1(a1)·ρ(b)
µ1([b]A1

) : a2 = ?

0 : otherwise.
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ηR(a1, a2)¬











µ1(a1)·µ2(a2)
µ1([b]A1

)

�

1− σ(b)
µ2([b]A2

)

�

: f1(a1) = f2(a2) = b
µ2(a2)·σ(b)
µ2([b]A2

) : a1 = ?

0 : otherwise.

Throughout, if a denominator is 0 we take the fraction to be 0 as well. Since supp(µ1) ⊆ S1 and supp(µ2) ⊆ S2 by
the marginal and support conditions of the two asymmetric liftings, supp(ηL) and supp(ηR) are contained in R?.

For the first marginal π1(ηL)(a1), if µ1([ f1(a1)]A1
) is zero then ρ( f1(a1)) = 0 by minimality and µ1(a1) = 0,

so ηL(a1, a2) = 0 for all a2 ∈A2. Otherwise if µ2([ f1(a1)]A2
) = 0 then ρ( f1(a1)) = µ1([ f1(a1)]A1

) by minimality,
and ηL(a1, a2) = µ1(a1) for a2 = ? and zero for a2 ∈A2. By a symmetric argument, the second marginal is similar.

To check the symmetric distance conditions, take any set W ⊆A?1 ×A?2. We want to compare

ηL(W) =
∑

(a1,a2)∈W0

ηL(a1, a2) +
∑

(a1,?)∈W

ηL(a1,?)

with
ηR(W) =

∑

(a1,a2)∈W0

ηR(a1, a2) +
∑

(?,a2)∈W

ηR(?, a2),

where W0 ¬ W ∩ (A1 ×A2). We claim (i) ηL(a1, a2) ≤ exp(ε) · ηR(a1, a2) for all (a1, a2) ∈ A1 ×A2, and (ii)
∑

(a1,?)∈W ηL(a1,?)≤ δ. Without loss of generality, we assume W is contained in R?.
To show (i), let b ¬ f1(a1) = f2(a2). If either µ1([b]A1

) or µ2([b]A2
) are zero then the relevant probabilities

in ηL and ηR are zero as well. Otherwise there are three cases. If both ρ(b) and σ(b) are both zero, then

ηL(a1, a2)
ηR(a1, a2)

=
µ1([b]A1

)

µ2([b]A2
)
≤ exp(ε).

If ρ(b)> 0, then σ(b) = 0 and µ1([b]A1
)> 0. If µ2([b]A2

) = 0 then the claim is immediate; otherwise,

ηL(a1, a2)
ηR(a1, a2)

=
µ1([b]A1

)

µ2([b]A2
)

�

1−
ρ(b)

µ1([b]A1
)

�

=
µ1([b]A1

)−ρ(b)
µ2([b]A2

)
= exp(ε)

where the final equality is by minimality of ρ(b). Similarly if σ(b)> 0, then ρ(b) = 0 and µ2([b]A2
)> 0 so

ηL(a1, a2)
ηR(a1, a2)

=
µ1([b]A1

)

µ2([b]A2
)

�

µ2([b]A2
)

µ2([b]A2
)−σ(b)

�

=
µ1([b]A1

)

µ2([b]A2
)−σ(b)

=
µ1([b]A1

)

exp(ε) ·µ1([b]A1
)
≤ exp(ε),

where the final equality is by minimality of σ(b); note that if µ2([b]A2
) = σ(b), then µ1([b]A1

) = 0, ηL(a1, a2),
and ηR(a1, a2) are all zero. This establishes (i).

Showing (ii) is more straightforward:
∑

(a1,?)∈W

ηL(a1,?)≤
∑

a1∈A1

ηL(a1,?) =
∑

b∈B

ρ(b)≤ δ.

Hence we have

ηL(W) =
∑

(a1,a2)∈W0

ηL(a1, a2) +
∑

(a1,?)∈W

ηL(a1,?)

≤ exp(ε)
∑

(a1,a2)∈W0

ηR(a1, a2) +δ

≤ exp(ε) ·ηR(W) +δ,

giving the distance bound dε (ηL ,ηR)≤ δ. A similar calculation yields the symmetric bound dε (ηR,ηL)≤ δ, so
(ηL ,ηR) witness the desired symmetric approximate lifting.
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Advanced composition of symmetric ε-distance

Building up to advanced composition for symmetric approximate liftings, we first show advanced composition for
symmetric ε-distance. Suppose we have two sequences of n functions { fi}i∈[n], {gi}i∈[n] where fi , gi : A→ Distr(A)
are such that for any a ∈ A, we can bound the ε-distance between fi(a) and gi(a). Then we will bound the
ε-distance between the output distributions from the n-fold compositions.

We use notation for the sequential composition of algorithms. Given a sequence of functions {hi}i∈[k] where
hi : A→ Distr(A), we write hk : A→ Distr(A) for the composition of {hi}. Formally, we define

hk(a)¬

¨

unit(a) : k = 0

bind(hk−1(a), hk) : k > 0.

(Recall unit : A→ Distr(A) and bind : Distr(A)× (A→ Distr(B))→ Distr(B) are the monadic operations for
distributions from Definition 2.2.2.) We use the same notation for functions of type hi : D×A→ Distr(A), defining
hk : D×A→ Distr(A) as

hk(d, a)¬

¨

unit(a) : k = 0

bind(hk−1(d, a), hk(d,−)) : k > 0.

Proposition 5.4.5. Let fi , gi : A→ Distr(A) satisfy dε ( fi(a), gi(a))≤ δ and dε (gi(a), fi(a))≤ δ for every i ∈ [n]
and a ∈A. For any ω ∈ (0, 1), let

ε∗ ¬ ε
Æ

2n ln(1/ω) + nε(eε − 1) and δ∗ ¬ nδ+ω.

Then for every n ∈ N and a ∈A, we have dε∗ ( f n(a), gn(a))≤ δ∗ and dε∗ (gn(a), f n(a))≤ δ∗.

Proof. Let B be the booleans and define hi : B×A→ Distr(A) as

hi(true, a)¬ fi(a) and hi(false, a)¬ gi(a)

for every a ∈ A. Then dε ( fi(a), gi(a)) ≤ δ and dε (gi(a), fi(a)) ≤ δ imply hi(a,−) : B → Distr(A) is (ε,δ)-
differentially private for every a ∈ A, where we view B as the set of databases with the full adjacency relation
relating all pairs of booleans; in particular, this is a symmetric relation. Applying the advanced composition
theorem of differential privacy (Theorem 4.1.5), hn(−, a) : B→ Distr(A) is (ε∗,δ∗)-differentially private for every
a ∈A. By Definition 4.2.1 we have

dε∗ (h
n(true, a), hn(false, a))≤ δ∗ and dε∗ (h

n(false, a), hn(true, a))≤ δ∗

for every a ∈A. Since hn(true, a) = f n(a) and hn(false, a) = gn(a) by definition, we conclude

dε∗ ( f
n(a), gn(a))≤ δ∗ and dε∗ (g

n(a), f n(a))≤ δ∗.

Advanced composition of symmetric approximate liftings

Next, we extend Proposition 5.4.5 to symmetric approximate liftings; roughly speaking, we will apply the
proposition to the functions mapping related inputs to the left or right witness distributions. We need a lemma
about how witnesses are transformed under composition.

Lemma 5.4.6. Consider two sequences of functions { fi}i∈[n], {gi}i∈[n] with fi : A1 → Distr(A1) and gi : A2 →
Distr(A2), and a sequence of binary relations {Φi}i∈{0,...,n} on A1 ×A2.

Suppose we have two sequences of functions {li}i∈[n], {ri}i∈[n] with li , ri : A?1 ×A?2→ Distr(A?1 ×A?2) producing
witnesses to an approximate lifting of Φi:
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1. π1(li(a1, a2)) = fi(a1) and π2(ri(a1, a2)) = gi(a2) for (a1, a2) ∈ Φi−1;

2. π1(li(a1,?)) = fi(a1) and π2(ri(?, a2)) = gi(a2); and

3. supp(li(a1, a2))∪ supp(ri(a1, a2)) ⊆ Φ?i for (a1, a2) ∈ Φ?i−1

for every i ∈ [n]. Then ln and rn generate witnesses for an approximate lifting relating the n-fold compositions:

1. π1(ln(a1, a2)) = f n(a1) and π2(rn(a1, a2)) = gn(a2) for (a1, a2) ∈ Φ0;

2. π1(ln(a1,?)) = f n(a1) and π2(rn(?, a2)) = gn(a2); and

3. supp(ln(a1, a2))∪ supp(rn(a1, a2)) ⊆ Φ?n for every (a1, a2) ∈ Φ?0.

Proof. By induction on n. The base case n= 0 is trivial. When n> 0, the support condition follows by induction;
the marginal conditions follow by a direct computation (Lemma A.1.1).

We are now ready to prove advanced composition for symmetric liftings.

Theorem 5.4.7. Let ω ∈ (0, 1). Consider two sequences of functions { fi}i∈[n] and {gi}i∈[n] with fi : A1→ Distr(A1)
and gi : A2→ Distr(A2), and a sequence of binary relations {Φi}i∈[n] on A1 ×A2 and Φ0 ⊆ A1 ×A2. Suppose for
every i ∈ [n] and (a1, a2) ∈ Φi−1, there is a symmetric approximate lifting:

fi(a1) Φi
](ε,δ)

gi(a2).

Then for every (a1, a2) ∈ Φ0, we have a symmetric lifting

f n(a1) Φn
](ε∗,δ∗)

gn(a2)

where ε∗ ¬ ε
p

2n ln(1/ω) + nε(eε − 1) and δ∗ ¬ nδ+ω.

Proof. For (a1, a2) ∈ Φi−1, let (µ(i)L (a1, a2),µ
(i)
R (a1, a2)) witness the approximate lifting of Φi relating fi(a1) and

gi(a2). Define functions {li}i∈[n], {ri}i∈[n] of type li , ri : A?1 ×A?2→ Distr(A?1 ×A?2) as follows:

li(a1, a2)¬















µ
(i)
L (a1, a2) : (a1, a2) ∈ Φi−1

unit(?)× gi(a2) : a1 = ?, a2 6= ?
fi(a1)× unit(?) : a1 6= ?, a2 = ?
unit(?,?) : a1 = a2 = ?

ri(a1, a2)¬















µ
(i)
R (a1, a2) : (a1, a2) ∈ Φi−1

unit(?)× gi(a2) : a1 = ?, a2 6= ?
fi(a1)× unit(?) : a1 6= ?, a2 = ?
unit(?,?) : a1 = a2 = ?

Given distributions η1 and η2 over B1 and B2 respectively, η1×η2 ∈ Distr(B1×B2) denotes the product distribution
defined in the expected way:

(η1 ×η2)(b1, b2)¬ η1(b1) ·η2(b2).

Now by assumption on (µ(i)L (a1, a2),µ
(i)
R (a1, a2)) and by definition when a1 = ? or a2 = ?, we have

dε (li(a1, a2), ri(a1, a2))≤ δ and dε (ri(a1, a2), li(a1, a2))≤ δ
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SYMINTRO

Ψ ¬ e1〈1〉= e2〈2〉 ∧Ψ1〈1〉 ∧Ψ2〈2〉
` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ ` c2 ∼(ε,δ) c1 : Φ−1 =⇒ Ψ−1

` c1 ≈(ε,δ) c2 : Φ=⇒ Ψ

SYMELIM-L
` c1 ≈(ε,δ) c2 : Φ=⇒ Ψ
` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ

SYMELIM-R
` c1 ≈(ε,δ) c2 : Φ=⇒ Ψ

` c2 ∼(ε,δ) c1 : Φ−1 =⇒ Ψ−1

Figure 5.5: Conversion rules between symmetric and standard judgments for APRHL

for all (a1, a2) ∈ Φ?i−1, and we have the marginal conditions required by Proposition 5.4.5. Now take any
(a1, a2) ∈ Φ0. By Proposition 5.4.5, we have

dε∗ (l
n(a1, a2), rn(a1, a2))≤ δ∗ and dε∗ (r

n(a1, a2), ln(a1, a2))≤ δ∗.

Lemma 5.4.6 gives the marginal conditions π1(ln(a1, a2)) = f n(a1) and π2(rn(a1, a2)) = gn(a2) and shows that
supp(ln(a1, a2)), supp(rn(a1, a2)) are contained in Φ?n, so ln(a1, a2) and rn(a1, a2) witness the desired symmetric
approximate lifting

f n(a1) Φn
](ε∗,δ∗)

gn(a2).

Symmetric judgments in APRHL

In order to use advanced composition in APRHL, we extend the logic with a new judgment modeling symmetric
approximate liftings. We call such judgments symmetric judgments.

Definition 5.4.8. A symmetric APRHL judgment is valid in logical context ρ, written

ρ |= c1 ≈(ε,δ) c2 : Φ=⇒ Ψ,

if for any two inputs (m1, m2) ∈ ¹Φºρ there exists an symmetric approximate lifting relating the outputs:

¹c1ºρm1 ¹Ψºρ
](¹εºρ ,¹δºρ)

¹c2ºρm2.

To prove these judgments, we extend APRHL with a few proof rules. To keep our proof system as simple
as possible, we introduce rules for symmetric judgments only where absolutely needed—namely, for advanced
composition—and use the conversion rules in Fig. 5.5 to move between symmetric and standard, asymmetric
judgments. The inverse relation Φ−1 can be defined syntactically by simply interchanging the tags 〈1〉 and 〈2〉 in a
formula Φ. Soundness of these rules is straightforward.

Theorem 5.4.9. The rules [SYMINTRO], [SYMELIM-L], and [SYMELIM-R] are sound.

Proof. Soundness of [SYMINTRO] follows by Lemma 5.4.4. Soundness of [SYMELIM-L] and [SYMELIM-R] follow
by definition of symmetric approximate lifting.
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WHILE-AC

ε∗ ¬ ε
Æ

2N ln(1/ω) + Nε(eε − 1) δ∗ ¬ Nδ+ω ω ∈ (0,1)
|= Φ→ ev〈1〉 ≤ 0→¬e1〈1〉 |= Φ→ e1〈1〉= e2〈2〉

∀K ∈ N, ` c1 ≈(ε,δ) c2 : Φ∧ e1〈1〉 ∧ ev〈1〉= K =⇒ Φ∧ ev〈1〉< K

`while e1 do c1 ≈(ε∗,δ∗) while e2 do c2 : Φ∧ ev〈1〉 ≤ N =⇒ Φ∧¬e1〈1〉

Figure 5.6: Advanced composition rule [WHILE-AC] for APRHL

An advanced composition rule for APRHL

Finally, we internalize advanced composition of liftings as the loop rule [WHILE-AC] in Fig. 5.6. Like the usual
rule [WHILE], the guards must be synchronized and the loops run at most N iterations. An (ε,δ)-approximate
coupling of the loop bodies gives an (ε∗,δ∗)-approximate coupling of the two loops, where ε∗ and δ∗ are from the
advanced composition theorem of differential privacy (Theorem 4.1.5).

Theorem 5.4.10. The rule [WHILE-AC] is sound.

Proof. The proof follows essentially by Theorem 5.4.7. As usual, we will leave the logical context ρ implicit.
Consider two memories (m1, m2) ∈ ¹Φ∧ ev〈1〉 ≤ Nº and two output distributions

µ1 ¬ ¹while e1 do c1ºm1 and µ2 ¬ ¹while e2 do c2ºm2.

We construct a symmetric approximate lifting relating µ1 and µ2. The value of N is given by the logical context ρ;
we treat it as a constant. We unroll the loop N times and define

µ′1 ¬ ¹(if e1 then c1)
N
ºm1 and µ′2 ¬ ¹(if e2 then c2)

N
ºm2.

We claim ¹e1ºm′1 = ¹e2ºm′2 = false for all m′1 ∈ supp(µ′1) and m′2 ∈ supp(µ′2). We can use the valid symmetric
APRHL judgment in the premise and symmetric versions of the rules [SEQ] and [COND] to construct a symmetric
approximate lifting

µ′1 Φ∧ ev〈1〉 ≤ 0
](Nε,Nδ)

µ′2.

Since |= Φ∧ ev〈1〉 ≤ 0→¬e1〈1〉, we have

µ′1 ¬e1〈1〉 ∧ ¬e2〈2〉
](Nε,Nδ)

µ′2.

Let µ′L ,µ′R be the corresponding witnesses. We know π1(µ′L) = µ
′
1 and π2(µ′R) = µ

′
2, and also

supp(µ′L)∪ supp(µ′R) ⊆ ¹¬e1〈1〉 ∧ ¬e2〈2〉º,

so ¹e1ºm′1 = ¹e2ºm′2 = false for all m′1, m′2 in the support of µ′1,µ′2 respectively. By the equivalences

while e1 do c1 ≡ (if e1 then c1)
N ;while e1 do c1

while e2 do c2 ≡ (if e2 then c2)
N ;while e2 do c2,

we know
µ1 = ¹(if e1 then c1)

N
ºm1 and µ2 = ¹(if e2 then c2)

N
ºm2.

Defining a family of relations
Φi ¬ Φ∧ (ev〈1〉 ≤ N − i ∨¬e1〈1〉),
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we have
|= if e1 then c1 ≈(ε,δ) if e2 then c2 : Φi =⇒ Φi+1

for every i using the premise, since Φi ensures the guards e1 and e2 are equal in the initial memories. By
validity, for any pair of memories satisfying Φi there is a symmetric approximate lifting of Φi+1 relating the two
output distributions. We can apply Theorem 5.4.7 with A1 = A2 = State, functions fi ¬ ¹if e1 then c1º and
gi ¬ ¹if e2 then c2º, and relations Φi to get the symmetric approximate lifting

µ1 Φ∧ (ev〈1〉 ≤ 0∨¬e1〈1〉)
](ε∗,δ∗)

µ2.

Since |= Φ∧ ev〈1〉 ≤ 0→¬e1〈1〉, we conclude

µ1 Φ∧¬e1〈1〉
](ε∗,δ∗)

µ2

so [WHILE-AC] is sound.

Remark 5.4.11. Our approach narrowly limits the scope of symmetric judgments: they can be used in [WHILE-AC]
or eliminated to a standard judgment. There are at least two other choices. One option would be to define a
full proof system based on symmetric judgments. Almost all the basic proof rules from APRHL would directly
generalize, including the standard rules for program commands and the Laplace rules. However, it is not clear how
to generalize the more advanced rules, including [PW-EQ] and [UTB-L]/[UTB-R]. The optimal subset coupling
(Theorem 5.3.1) also does not directly generalize to symmetric liftings; this poses a problem for a symmetric
version of [LAPINT].

For another option, we could avoid symmetric judgments entirely by fusing [SYMINTRO], [WHILE-AC], and
[SYMELIM-L] together into a single rule. While this would suffice for our examples, it is conceptually clearer to
separate symmetric and asymmetric judgments. Our design choice leaves room for other rules specific to symmetric
approximate liftings, and clearly identifies the main bottleneck in converting from standard approximate liftings
to symmetric liftings in the rule [SYMINTRO].

5.5 Proving privacy for Between Thresholds

To draw everything together, we prove differential privacy for the Between Thresholds mechanism proposed by Bun
et al. (2017), a more advanced version of the Sparse Vector mechanism. The input is again a stream of numeric
queries, but now there are two numeric thresholds A and B with A< B. The original mechanism outputs LEFT if
the answer is approximately below A, RIGHT if the answer is approximately above B, and HALT if the answer is
approximately between A and B.

We analyze a variant of Between Thresholds that releases the index and approximate answer of the first C
queries between the thresholds; Fig. 5.7 presents the code of the algorithm. The variables a and b contain the noisy
thresholds. Unlike Sparse Vector, we resample the noise u when computing a and b after each between-threshold
query—this is needed to analyze the outer loop by advanced composition. Also, the noise u is added in opposite
directions to the two thresholds. Otherwise, the code is largely the same as Sparse Vector.

The privacy analysis of this algorithm is more complex than for Sparse Vector. First, privacy fails if the noisy
thresholds a and b are too close together. Even if the exact thresholds A and B are far apart, there is always
some small, non-zero probability that the noise u may be very large. Therefore the best we can hope for is
(ε,δ)-differential privacy, where δ bounds the probability that the threshold noise is too large. Second, while the
proof strategy for the inner loop remains broadly the same, in the critical iteration we must ensure that if one
execution is between thresholds, then so is the other; we use the subset coupling for this purpose. Finally, we
apply the advanced composition theorem to analyze the outer loop.

It will be useful to have a simpler bound on the approximation parameter for the subset coupling.



CHAPTER 5. ADVANCED APPROXIMATE COUPLINGS 98

i← 1;
out← [];
while i ≤ N ∧ |out|< C do

u $← Lapε′(0);
a← A− u;
b← B + u;
go← true;
ans← (0,0);
while i ≤ N ∧ go do

v $← Lapε′/3(evalQ(i, d));
if a < v < b then

noisy $← Lapε′(evalQ(i, d));
ans← (i, noisy);
out← ans :: out;
go← false;

i← i + 1

Figure 5.7: Between Thresholds

Lemma 5.5.1. Let λ ∈ (0, 1/2). Suppose we have r, s ∈ Z such that

s− r ≥
6
λ

ln
4
λ
− 2,

and suppose we have two means v1, v2 ∈ Z with |v1 − v2| ≤ 1. Then we have an approximate lifting

Lapλ/3(v1) {(x1, x2) | x1 ∈ [r − 1, s+ 1]↔ x2 ∈ [r, s]}](λ,0) Lapλ/3(v2).

Proof. By the soundness of [LAPINT] (Theorem 5.3.5), we have an approximate lifting

Lapλ/3(v1) {(x1, x2) | x1 ∈ [r − 1, s+ 1]↔ x2 ∈ [r, s]}](κ,0) Lapλ/3(v2)

where

κ¬ ln
�

exp(2λ/3)
1− exp(−σλ/6)

�

and σ ¬ (s− r) + 2.

We check κ≤ λ assuming σ ≥ 6
λ ln 4

λ . Substituting, it suffices to show

exp(2λ/3)
1−λ/4

≤ exp(λ)

which is equivalent to
λ/4+ exp(−λ/3)− 1≤ 0.

Since the left side is convex in λ, the maximum occurs on the boundary of the domain. We can directly check the
inequality at the endpoints λ= {0,1/2}.

We are now ready to prove privacy for Between Thresholds. As we did for Sparse Vector, we start with an
informal proof by approximate coupling.
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Theorem 5.5.2. Let ε,δ ∈ (0,1) and let q1, . . . , qN : D→ Z be a list of 1-sensitive queries. If we set

ε′ ¬
ε

6
p

2C ln(2/δ)

and the thresholds A, B are equal across both runs and satisfy

B − A≥
6
ε′

ln(4/ε′) +
2
ε′

ln(2/δC),

then the Between Thresholds algorithm (Fig. 5.7) is (ε,δ)-differentially private.

Proof by approximate coupling. Consider the outer loop body. We have |u〈1〉| ≤ (1/ε′) ln(2/δC) in the first process
except with probability δ/2C , and we couple u〈1〉 and u〈2〉 so u〈1〉 − 1= u〈2〉; this is an (ε′,δ/2C)-approximate
coupling since the noise is drawn from Lapε′(0). The coupling ensures the noisy thresholds satisfy

a〈1〉+ 1= a〈2〉 and b〈1〉= b〈2〉+ 1. (5.1)

Next, consider the inner loop. Each iteration, we approximately couple the processes so ans〈1〉= ans〈2〉. For any
pair ( j, y) with j ∈ N and y ∈ Z, we construct an approximate coupling of the inner loops such that if ans on the
first side is equal to ( j, y), then so is ans on the second side; by pointwise equality, this will imply an approximate
coupling with ans〈1〉= ans〈2〉.

As before, if j /∈ [1, N] the proof is trivial. Otherwise, we handle the inner iterations in one of two ways. On
iterations i 6= j we couple the samplings for v and noisy with the null coupling, ensuring |v〈1〉 − v〈2〉| ≤ 1. This
guarantees that before iteration j, if the first side is outside the thresholds, then so is the second side (by the
coupling of the thresholds, Eq. (5.1)). We use (0, 0)-approximate couplings for these iterations.

On the critical iteration i = j, we use the optimal subset coupling when sampling v so that

v〈1〉 ∈ [a〈1〉, b〈1〉]↔ v〈2〉 ∈ [a〈2〉, b〈2〉]. (5.2)

Given our accuracy bound on |u〈1〉|, the inner interval [a〈2〉, b〈2〉] satisfies

b〈2〉 − a〈2〉 ≥
6
ε′

ln(4/ε′)− 2

under the threshold coupling, so Eq. (5.2) is an (ε′, 0)-approximate coupling (Lemma 5.5.1). This coupling ensures
the two processes behave the same at the conditional. If both processes are between thresholds, we apply the
standard coupling for the Laplace mechanism so noisy〈1〉= noisy〈2〉; this is an (ε′, 0)-approximate coupling. If
both processes are not between thresholds then we don’t sample noisy. So, we have an (2ε′, 0)-approximate
coupling for the inner loop such that if ans is equal to ( j, y) on the first run, then ans is equal to ( j, y) on the second
run. By pointwise equality, this implies an (2ε′, 0)-approximate coupling for the inner loop with ans〈1〉= ans〈2〉
as long as the threshold noises satisfy u〈1〉 − 1= u〈2〉 and the accuracy bound.

Combined with the initial (ε′,δ/2C)-approximate coupling for u, we have an (2ε′+ε′,δ/2C+0) = (3ε′,δ/2C)-
approximate coupling ensuring ans〈1〉 = ans〈2〉 for the body of the outer loop. The outer loop executes at most C
iterations, so by the advanced composition theorem (using the parameter setting from Footnote 2) we have an
(ε,δ)-approximate coupling of the outer loops with out〈1〉= out〈2〉, establishing (ε,δ)-differential privacy.
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We can give a more formal proof of privacy in APRHL. We work with the following, equivalent version of
Between Thresholds:

i← 1;
out← [];
while i ≤ N ∧ |out|< C do

u $← Lapε′(0);
a← A− u;
b← B + u;
go← true;
ans← (0,0);
while i ≤ N do

v $← Lapε′/3(evalQ(i, d));
if a < v < b ∧ go then

noisy $← Lapε′(evalQ(i, d));
ans← (i, noisy);
go← false;

i← i + 1;
if p1(ans) 6= 0 then

i← p1(ans) + 1;
out← ans :: out

We call this program BT and the inner loop in. Compared to the algorithm in Fig. 5.7, the main difference is
in the inner loop: each execution of in runs through all the queries, skipping the check once we have found a
between-threshold query. More precisely, the flag go, which indicates we have not yet found a between-threshold
query, is in the inner loop guard in Fig. 5.7 while it is in the between thresholds check in BT. After the inner loop,
if a between-thresholds query was found then the index in ans must be non-zero, so the algorithm records the
noisy answer and index, and resets the counter i to pick up after the last answered query. The inner loops in this
version of the algorithm can be analyzed synchronously.

Theorem 5.5.3. Let ε,δ ∈ (0,1), let q1, . . . , qN : D→ Z be a list of 1-sensitive queries, and let the logical variables
D1, D2 represent two adjacent databases. If we set

ε′ ¬
ε

6
p

2C ln(2/δ)

in BT, and the thresholds A, B are equal across both runs and satisfy

B − A≥
6
ε′

ln(4/ε′) +
2
ε′

ln(2/δC),

then the following judgment holds:

` BT ∼(ε,δ) BT : d〈1〉= D1 ∧ d〈2〉= D2 =⇒ out〈1〉= out〈2〉.

Proof. The APRHL proof follows the approximate coupling proof in Theorem 5.5.2 closely. There are two main
technicalities. First, we must take care to apply the rules that affect the parameter δ in the proper order.
For instance, [PW-EQ] should be applied to pointwise judgments that are (ε, 0)-approximate couplings—if the
pointwise judgment has δ > 0, then [PW-EQ] will sum δ over all possible outputs. Since [LAPACC-L]/[LAPACC-R]
and [WHILE-AC] increase the δ parameter, we apply these rules below [PW-EQ] in the proof tree. Second, we
need to make sure that the outer loop invariant is of the correct form so we can convert to a symmetric judgment
and apply [WHILE-AC].
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At a high level, we apply [PW-EQ] on the inner loop assuming in the pre-condition that the threshold noise are
coupled appropriately, and not too large. Then, we apply the accuracy bound [LAPACC-L] and threshold coupling
[LAPGEN] for the first part of the outer loop body. Finally, we convert the standard APRHL judgment for the loop
body to a symmetric judgment, applying [WHILE-AC] on the outer loop to conclude the proof.

Let’s see this plan in action. We begin with the inner loop, in. We prove a pointwise judgment for the following,
equivalent version of in, split into three stages:

while i ≤ N ∧ i < j do
v $← Lapε′/3(evalQ(i, d));
if a < v < b ∧ go then

noisy $← Lapε′(evalQ(i, d));
ans← (i, noisy);
go← false;

i← i + 1;
while i ≤ N ∧ i = j do

v $← Lapε′/3(evalQ(i, d));
if a < v < b ∧ go then

noisy $← Lapε′(evalQ(i, d));
ans← (i, noisy);
go← false;

i← i + 1;
while i ≤ N do

v $← Lapε′/3(evalQ(i, d));
if a < v < b ∧ go then

noisy $← Lapε′(evalQ(i, d));
ans← (i, noisy);
go← false;

i← i + 1

We call this program in′, the three loops w<, w=, and w>, and the common loop body bodyin. We implicitly
maintain the invariant d〈1〉= D1 ∧ d〈2〉= D2 in all judgments and take the following global invariant:

Ξ¬







i〈1〉= i〈2〉
a〈1〉+ 1= a〈2〉 ∧ b〈1〉= b〈2〉+ 1∧ b〈2〉 − a〈2〉 ≥ 6

ε′ ln(4/ε′)− 2

[a〈1〉, b〈1〉] = [A− u〈1〉, B + u〈1〉]∧ [a〈2〉, b〈2〉] = [A− u〈2〉, B + u〈2〉]

Reading from top to bottom, this ensures (i) the loops are synchronized, (ii) the noisy thresholds are coupled and
not too close, and (iii) the noisy thresholds share the noise u. Since in′ does not modify the variables a, b and u,
this assertion is preserved by the loops. Now let ( j, y) ∈ N×Z be a possible value of ans. We define the following
invariants for the three loops:

Θ< ¬ Ξ∧ go〈1〉 → go〈2〉 ∧ ¬(i〈1〉 ≤ N ∧ i〈1〉< j)→ i〈1〉= j

Θ= ¬ Ξ∧







go〈1〉 → go〈2〉
ans〈1〉= ( j, y)→ ans〈2〉= ( j, y)
¬(i〈1〉 ≤ N ∧ i〈1〉= j)→ i〈1〉= j + 1

Θ> ¬ Ξ∧ i〈1〉> j ∧ ans〈1〉= ( j, y)→ ans〈2〉= ( j, y)

Now we proceed one loop at a time. First, we have

` bodyin ∼(0,0) bodyin : Θ< =⇒ Θ<
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by coupling the sampling for v with [LAPNULL] and using [LAP-L], [LAP-R], or [LAPNULL] to couple the samples
for noisy. This ensures |v〈1〉 − v〈2〉| ≤ 1; combined with the threshold coupling, we know that if the first side
doesn’t find a between-threshold query then neither does the second side, so go〈1〉 → go〈2〉. We get a coupling for
the first loop by [WHILE]:

` w< ∼(0,0) w< : Θ< =⇒ Θ< ∧¬(i ≤ N ∧ i < j).

For the second loop, we prove
` bodyin ∼(2ε′,0) bodyin : Θ= =⇒ Θ=.

We couple the samplings for v with the subset coupling [LAPINT], ensuring the two processes take the same path
in the conditional. Since the thresholds are sufficiently apart (by Ξ) and the queries are 1-sensitive, [LAPINT] is an
(ε′, 0)-approximate coupling by Lemma 5.5.1.

If both processes find between-threshold queries, then we couple the samplings for noisy with the standard
Laplace rule [LAP] so noisy〈1〉= noisy〈2〉; this is an (ε′, 0)-approximate coupling since the queries are 1-sensitive.
Otherwise if both sides are outside the interval, we do not sample noisy. Thus, we have a (2ε′, 0)-approximate
coupling where if ans〈1〉= ( j, y), then ans〈2〉= ( j, y) too. Since the loop w= executes for exactly one iteration,
[WHILE] gives

` w= ∼(2ε′,0) w= : Θ= =⇒ Θ= ∧¬(i〈1〉 ≤ N ∧ i〈1〉= j).

For the last loop we simply couple the samplings for v with the null coupling [LAPNULL] and use any zero-cost
coupling for noisy ([LAP-L], [LAP-R], or [LAPNULL]), giving

` w> ∼(0,0) w> : Θ> =⇒ Θ> ∧¬(i ≤ N).

Applying the rule of consequence with the implications

|= Θ< ∧¬(i〈1〉 ≤ N ∧ i〈1〉< j)→ Θ=
|= Θ= ∧¬(i〈1〉 ≤ N ∧ i〈1〉= j)→ Θ>,

we combine the loop judgments while summing the approximation parameters with [SEQ] to get

` in′ ∼(2ε′,0) in′ : Ξ=⇒ ans〈1〉= ( j, y)→ ans〈2〉= ( j, y).

Pointwise equality [PW-EQ] completes the proof for the inner loop:

` in′ ∼(2ε′,0) in′ : Ξ=⇒ ans〈1〉= ans〈2〉.

Now let the outer loop by wout, with body bodyout. We ensure Ξ after the threshold samplings by applying [LAPGEN]
and the accuracy bound [LAPACC-L], using an (ε′,δ/2C)-approximate coupling for the threshold samplings and
showing

` bodyout ∼(3ε′,δ/2C) bodyout : (i, out)〈1〉= (i, out)〈2〉=⇒ (i, out)〈1〉= (i, out)〈2〉.

Continuing to keep the adjacency condition d1〈1〉 = D1 ∧ d2〈2〉 = D2 implicit, we can apply [SYMINTRO] to get the
symmetric judgment

` bodyout ≈(3ε′,δ/2C) bodyout : (i, out)〈1〉= (i, out)〈2〉=⇒ (i, out)〈1〉= (i, out)〈2〉.

Taking the loop invariant Ψ ¬ (i, out)〈1〉 = (i, out)〈2〉 ∧ d〈1〉 = D1 ∧ d〈2〉 = D2, the advanced composition rule
[WHILE-AC] gives

` wout ≈(ε,δ) wout : Ψ =⇒ Ψ

using the setting of ε′ from Footnote 2. Converting back to a standard judgment by [SYMELIM-L] and handling the
initial assignments, we conclude differential privacy:

` BT ∼(ε,δ) BT : d〈1〉= D1 ∧ d〈2〉= D2 =⇒ out〈1〉= out〈2〉.
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5.6 Comparison to other approximate liftings

The notion of approximate lifting has been formulated numerous times. We compare with several prior definitions
in the discrete case. Research on the continuous case is ongoing; we summarize recent developments in the next
chapter (Section 6.1).

Symmetric approximate liftings

While symmetric approximate liftings are less general than their asymmetric counterparts, they are interesting in
their own right. In fact, our symmetric approximate liftings are equivalent to the approximate liftings proposed by
Barthe et al. (2013c) in the original work on proving differential privacy via relational program logics. Unlike our
definitions, which use two witnesses, their notion is based on a single witness.

Definition 5.6.1. Let µ1,µ2 be sub-distributions over A1 and A2, and let R ⊆ A1 ×A2 be a relation. A sub-
distribution µ over pair sA1 ×A2 is a witness for the one-witness (ε,δ)-approximate R-lifting of (µ1,µ2) if:

1. π1(µ)≤ µ1 and π2(µ)≤ µ2;

2. supp(µ) ⊆R; and

3. dε (µ1,π1(µ))≤ δ and dε (µ2,π2(µ))≤ δ.1

This definition is arguably closer to the spirit of probabilistic couplings: a single joint sub-distribution approxi-
mately modeling two given distributions as marginals.

Theorem 5.6.2. Let µ1,µ2 be sub-distributions over A1 and A2, and let R ⊆A1 ×A2 be a relation. There is a one-
witness (ε,δ)-approximate lifting of R in the sense of Definition 5.6.1 if and only if there is a symmetric approximate
lifting

µ1 R
](ε,δ)

µ2.

Proof. For the reverse direction, let (µL ,µR) witness the symmetric approximate lifting and define η ∈ SDistr(A1×
A2) as the pointwise minimum: η(a1, a2) ¬ min(µL(a1, a2),µR(a1, a2)). We check that η is a witness to an
approximate lifting in the sense of Definition 5.6.1.

The support condition follows from the support condition for (µL ,µR). The marginal conditions π1(η)≤ µ1
and π2(η) ≤ µ2 also follow by the marginal conditions for (µL ,µR). The only thing to check is the distance
condition. Define non-negative constants

δ(a1, a2)¬max(µL(a1, a2)− exp(ε) ·µR(a1, a2), 0).

By the distance condition on (µL ,µR),

µL(a1, a2)≤ exp(ε) ·µR(a1, a2) +δ(a1, a2)

with equality when δ(a1, a2)> 0, and
∑

a1,a2
δ(a1, a2)≤ δ. We claim

min(µL(a1, a2),µR(a1, a2))≥ exp(−ε)(µL(a1, a2)−δ(a1, a2)).

If δ(a1, a2) = 0 then µR(a1, a2)≥ exp(−ε)µL(a1, a2). Otherwise if δ(a1, a2)> 0, then

µR(a1, a2) = exp(−ε)(µL(a1, a2)−δ(a1, a2))≤ µL(a1, a2)

1The original definition by Barthe et al. (2013c) involved a symmetric notion of ε-distance, and flipped the direction of both distances in
this point. To keep notation uniform, we present their definition in terms of our (asymmetric) notion of ε-distance from Definition 4.2.1.
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and the claim is again clear. Similarly, define

δ′(a1, a2)¬max(µR(a1, a2)− exp(ε) ·µL(a1, a2), 0).

We have
µR(a1, a2)≤ exp(ε) ·µL(a1, a2) +δ

′(a1, a2)

with equality when δ′(a1, a2) = 0, and
∑

a1,a2
δ′(a1, a2)≤ δ. By analogous reasoning, we have

min(µL(a1, a2),µR(a1, a2))≥ exp(−ε)(µR(a1, a2)−δ′(a1, a2)).

Now let S1 ⊆A1 be any subset. Then:

µ1(S1)− exp(ε) ·π1(η)(S1) =
∑

a1∈S1

 

µ1(a1)− exp(ε)
∑

a2∈A2

min(µL(a1, a2),µR(a1, a2))

!

≤
∑

a1∈S1

 

µ1(a1)− exp(ε)
∑

a2∈A2

exp(−ε)(µL(a1, a2)−δ(a1, a2))

!

=
∑

a1∈S1,a2∈A2

δ(a1, a2)≤ δ.

The other marginal is similar: for any subset S2 ⊆A2, we have

µ2(S2)− exp(ε) ·π2(η)(S2) =
∑

a2∈S2

 

µ2(a2)− exp(ε)
∑

a1∈A1

min(µL(a1, a2),µR(a1, a2))

!

≤
∑

a2∈S2

 

µ2(a2)− exp(ε)
∑

a1∈A1

exp(−ε)(µR(a1, a2)−δ′(a1, a2))

!

=
∑

a2∈S2,a1∈A1

δ′(a1, a2)≤ δ.

Thus, η witnesses the one-witness (ε,δ)-approximate lifting of R.
The forward direction is more interesting. Let η ∈ SDistr(A1 ×A2) be the single witness and define

δ(a1)¬max(µ1(a1)− exp(ε) ·π1(η)(a1), 0)
δ′(a2)¬max(µ2(a2)− exp(ε) ·π2(η)(a2), 0).

By the distance conditions dε (µ1,π1(η))≤ δ and dε (µ2,π2(η))≤ δ, we have δ(a1),δ′(a2)≥ 0 and

µ1(a1)≤ exp(ε) ·π1(η)(a1) +δ(a1)
µ2(a2)≤ exp(ε) ·π2(η)(a2) +δ

′(a2),

with equality when δ(a1) or δ′(a2) are strictly positive. Furthermore,
∑

a1∈A1
δ(a1) and

∑

a2∈A2
δ′(a2) are at most

δ. Define witnesses µL ,µR ∈ SDistr(A?1 ×A?2) as follows:

µL(a1, a2)¬











η(a1, a2) ·
µ1(a1)−δ(a1)
π1(η)(a1)

: a1 6= ?, a2 6= ?
µ1(a1)−

∑

a′2∈A2
µL(a1, a′2) : a1 6= ?, a2 = ?

0 : otherwise
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µR(a1, a2)¬











η(a1, a2) ·
µ2(a2)−δ′(a2)
π2(η)(a2)

: a1 6= ?, a2 6= ?
µ2(a2)−

∑

a′1∈A1
µR(a′1, a2) : a1 = ?, a2 6= ?

0 : otherwise.

As usual, if any denominator is zero we take the whole term to be zero as well.
The support condition follows from the support condition of η; the marginal conditions hold by definition. All

probabilities are non-negative—for instance in µL , if δ(a1)> 0 then µ1(a1)−δ(a1) = exp(ε) ·π1(η)(a1)≥ 0 and

µL(a1,?) = µ1(a1)− exp(ε) ·π1(η)(a1) = δ(a1)≥ 0

when π1(η)(a1)> 0; if π1(η)(a1) = 0 then µL(a1,?) = µ1(a1) = 0. If δ(a1) = 0 then we can check η(a1,?)≥ 0.
A similar argument shows that µR is non-negative.

So, it remains to check the distance bounds. We first claim

µL(a1, a2)≤ exp(ε) ·µR(a1, a2) and µR(a1, a2)≤ exp(ε) ·µL(a1, a2).

When a1, a2 6= ?, by definition µL(a1, a2) and µR(a1, a2) are both positive or both zero depending on whether
η(a1, a2) is positive or zero. The zero case is immediate. In the positive case,

µL(a1, a2)
η(a1, a2)

=
µ1(a1)−δ(a1)
π1(η)(a1)

≤ exp(ε) and
µR(a1, a2)
η(a1, a2)

=
µ2(a2)−δ′(a2)
π2(η)(a2)

≤ exp(ε).

We can also lower bound the ratios:

µL(a1, a2)
η(a1, a2)

=
µ1(a1)−δ(a1)
π1(η)(a1)

≥ 1 and
µR(a1, a2)
η(a1, a2)

=
µ2(a2)−δ′(a2)
π2(η)(a2)

≥ 1;

for instance when δ(a1)> 0 the ratio is exactly equal to exp(ε)≥ 1, and when δ(a1) = 0 the ratio is at least 1 by
the marginal property π1(η)≤ µ1. So, µL(a1, a2)/η(a1, a2) and µR(a1, a2)/η(a1, a2) are in [1, exp(ε)] when all
distributions are positive, establishing the claim.

Finally, we bound the mass on points (a1,?). Letting S1 ⊆ A1 be any subset, 0 = µR(S1 × {?}) ≤ exp(ε) ·
µL(S1 × {?}) +δ is clear. For the other direction,

µL(S1 × {?}) =
∑

a1∈S1

 

µ1(a1)−µ1(a1)
∑

a2∈A2

η(a1, a2)
π1(η)(a1)

+δ(a1)
∑

a2∈A2

η(a1, a2)
π1(η)(a1)

!

= µ1(S1)−µ1(S1) +δ(S1)≤ exp(ε) ·µR(S1 × {?}) +δ.

The mass at points (?, a2) can be bounded in a similar way. Let S2 ⊆A2 be any subset. Then 0= µL({?} × S2)≤
exp(ε) ·µR({?} × S2) +δ is clear. For the other direction,

µR({?} × S2) =
∑

a2∈S2

 

µ2(a2)−µ2(a2)
∑

a1∈A1

η(a1, a2)
π2(η)(a2)

+δ′(a2)
∑

a1∈A1

η(a1, a2)
π2(η)(a2)

!

= µ2(S2)−µ2(S2) +δ
′(S2)≤ exp(ε) ·µL({?} × S2) +δ.

So dε (µL ,µR)≤ δ and dε (µR,µL)≤ δ, and we have a symmetric approximate lifting.

Asymmetric approximate liftings, alternative definition

After introducing their symmetric notion of lifting (Definition 5.6.1), Barthe et al. (2013c) also considered
asymmetric approximate liftings with a single witness distribution.
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Definition 5.6.3. Let µ1,µ2 be sub-distributions over A1 and A2, and let R ⊆ A1 ×A2 be a relation. A sub-
distribution µ over pairs A1×A2 is a witness for the one-witness asymmetric (ε,δ)-approximate R-lifting of (µ1,µ2)
if:

1. π1(µ)≤ µ1 and π2(µ)≤ µ2;

2. supp(µ) ⊆R; and

3. dε (µ1,π1(µ))≤ δ.2

Note the key difference compared to the symmetric version: the distance bound is only required to hold
between the first distribution and the first marginal. We can show Definition 5.6.3 coincides with our asymmetric
notion of approximate lifting.

Theorem 5.6.4. Let µ1,µ2 be sub-distributions over A1 and A2, and let R ⊆ A1 ×A2 be a relation. Then there is
a (one-witness) asymmetric (ε,δ)-approximate lifting of R in the sense of Definition 5.6.3 if and only if there is an
approximate lifting:

µ1 R](ε,δ) µ2.

Proof. For the reverse direction, let (µL ,µR) witness the approximate lifting and define η ∈ SDistr(A1 × A2)
as the pointwise minimum: η(a1, a2) ¬ min(µL(a1, a2),µR(a1, a2)). We claim that η witnesses an asymmetric
approximate lifting in the sense of Definition 5.6.3.

The support condition follows from the support condition for (µL ,µR); the marginal conditions π1(η) ≤ µ1
and π2(η)≤ µ2 also follow by the marginal conditions for (µL ,µR). To check the distance condition, define

δ(a1, a2)¬max(µL(a1, a2)− exp(ε) ·µR(a1, a2), 0).

By the distance condition on (µL ,µR), we have

µL(a1, a2)≤ exp(ε) ·µR(a1, a2) +δ(a1, a2)

with equality when δ(a1, a2)> 0, and
∑

a1,a2
δ(a1, a2)≤ δ. Like in the proof of Theorem 5.6.2, we have

min(µL(a1, a2),µR(a1, a2))≥ exp(−ε)(µL(a1, a2)−δ(a1, a2)).

To conclude the distance bound, let S1 ⊆A1 be a subset. Then:

µ1(S1)− exp(ε) ·π1(η)(S1) =
∑

a1∈S1

 

µ1(a1)− exp(ε)
∑

a2∈A2

min(µL(a1, a2),µR(a1, a2))

!

≤
∑

a1∈S1

 

µ1(a1)− exp(ε)
∑

a2∈A2

exp(−ε)(µL(a1, a2)−δ(a1, a2))

!

=
∑

a1∈S1,a2∈A2

δ(a1, a2)≤ δ.

Thus, η witnesses the (one-witness) asymmetric (ε,δ)-approximate lifting of R.
The forward direction is more interesting. Let η ∈ SDistr(A1 ×A2) be the single witness and define

δ(a1)¬ µ1(a1)− exp(ε) ·π1(η)(a1).

2The original definition by Barthe et al. (2013c) used the same notion of ε-distance that we use (Definition 4.2.1), but incorrectly flipped
the direction of the distance bound. It is also possible to define a version involving the second marginal instead of the first.
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By the distance condition dε (µ1,π1(η))≤ δ, we know δ(a1) is non-negative. Furthermore,

µ1(a1)≤ exp(ε) ·π1(η)(a1) +δ(a1)

with equality when δ(a1) is strictly positive, and
∑

a1∈A1
δ(a1)≤ δ. Define two witnesses µL ,µR ∈ SDistr(A?1×A

?
2)

as follows:

µL(a1, a2)¬











η(a1, a2) ·
µ1(a1)−δ(a1)
π1(η)(a1)

: a1 6= ?, a2 6= ?
µ1(a1)−

∑

a′2∈A2
µL(a1, a′2) : a1 6= ?, a2 = ?

0 : otherwise

µR(a1, a2)¬











η(a1, a2) : a1 6= ?, a2 6= ?
µ2(a2)−

∑

a′1∈A1
µR(a′1, a2) : a1 = ?, a2 6= ?

0 : otherwise.

If any denominator is zero, we take the probability to be zero as well.
The support condition follows from the support condition of η; the marginal conditions hold by definition. To

show all probabilities are non-negative, for µL note that if δ(a1)> 0 then µ1(a1)−δ(a1) = exp(ε) ·π1(η)(a1)≥ 0
and hence

µL(a1,?) = µ1(a1)−δ(a1)≥ 0

assuming π1(η)(a1)> 0; if π1(η)(a1) = 0 then µL(a1,?) = 0. For µR, non-negativity holds by π2(η)≤ µ2.
We just need to show the distance bound. When a1, a2 6= ?, we claim

µL(a1, a2)≤ exp(ε) ·η(a1, a2) = exp(ε) ·µR(a1, a2).

By definition µL(a1, a2), µR(a1, a2), and η(a1, a2) are all positive or all zero. The zero case is immediate. In the
positive case,

µL(a1, a2)
η(a1, a2)

=
µ1(a1)−δ(a1)
π1(η)(a1)

≤ exp(ε)

establishes the claim. To bound the mass on points (a1,?), let S1 ⊆A1 be any subset. Then:

µL(S1 × {?}) =
∑

a1∈S1

 

µ1(a1)−µ1(a1)
∑

a2∈A2

η(a1, a2)
π1(η)(a1)

+δ(a1)
∑

a2∈A2

η(a1, a2)
π1(η)(a1)

!

= µ1(S1)−µ1(S1) +δ(S1)≤ exp(ε) ·µR(S1 × {?}) +δ

so dε (µL ,µR)≤ δ as desired, and we have witnesses to an approximate lifting.

Prior two-witness approximate liftings

Our notion of approximate lifting is strongly inspired by a prior definition.

Definition 5.6.5 (Barthe and Olmedo (2013) and Olmedo (2014)). Let µ1,µ2 be sub-distributions over A1 and
A2, and let R ⊆A1 ×A2 be a relation. Two sub-distributions µL ,µR over pairs A1 ×A2 are said to be witnesses for
the (ε,δ)-approximate R-lifting of (µ1,µ2) if:

1. π1(µL) = µ1 and π2(µR) = µ2;

2. supp(µL)∪ supp(µR) ⊆R; and

3. dε (µL ,µR)≤ δ.
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There are several positive features of this definition. First, it generalizes to other notions of distance on
distribution; the distance dε can be replaced by an f -divergence. Furthermore, the witness distributions are related
by a distance that looks like the distance from differential privacy, so composition theorems from differential
privacy generalize to these liftings.

However, there are several notable drawbacks. Perhaps the biggest flaw is this definition does not support
approximate lifting when R does not contain the supports supp(µ1)×supp(µ2). This limitation rules out up-to-bad
couplings and accuracy bounds. There are also several annoying technical issues—the mapping property in
Theorem 4.2.7 only holds for surjective maps, the support property Proposition 4.2.6 fails, the subset coupling in
Theorem 5.3.1 does not work if the larger subset S1 is the whole domain A1, etc. These flaws are remedied in our
definition.

Other notions of approximate equivalence

Approximate notions of lifting have also appeared in the literature on probabilistic bisimulation. Tschantz et al.
(2011) introduced the δ-lifting of a relation R to relate two distributions µ1,µ2 when there is a bijection f on the
supports matching elements with probabilities within a multiplicative factor:

�

�

�

�

ln
µ1(x)
µ2( f (x))

�

�

�

�

≤ δ

and (x , f (x)) ∈R. Tschantz et al. (2011) used this notion of lifting to prove a variant of differential privacy for
probabilistic labeled transition systems, with a proof technique based on an unwinding family of relations.

Prior researchers largely focused on additive notions of approximate equivalence; probably the first was due to
Giacalone, Jou, and Smolka (1990). Segala and Turrini (2007) proposed ε-lifting, equivalent to (0,ε)-approximate
lifting in our terminology. More recently, Desharnais, Laviolette, and Tracol (2008) and Tracol, Desharnais, and
Zhioua (2011) investigated approximate notions of probabilistic simulation and bisimulation, again similar to our
(0,δ)-approximate liftings. Desharnais et al. (2008) noted the connection between their approximate liftings and
maximum flows in a graph, extending the connection by Desharnais (1999, Theorem 7.3.4) for exact liftings; we
use a similar observation to prove our approximate version of Strassen’s theorem.



Chapter 6

Emerging directions

While we have limited this thesis to core connections between probabilistic couplings and program logics, several
lines of work—recently completed or currently in progress—have already leveraged our results. We briefly
survey these extensions (Section 6.1), and then discuss promising technical directions for further investigation
(Section 6.2). We conclude by considering possible future connections between the theory of formal verification
and the theory of randomized algorithms (Section 6.3).

6.1 Concurrent developments

Couplings for non-relational properties: Independence and uniformity

As we have seen, couplings are a natural fit for probabilistic relational properties. Properties describing a single
program can also be viewed relationally in some cases, enabling cleaner proofs by coupling. Barthe, Espitau,
Grégoire, Hsu, and Strub (2017b) develop this idea to prove uniformity, probabilistic independence, and conditional
independence, examples of probabilistic non-relational properties. We briefly sketch their main reductions.

A uniform distribution places equal probability on every value in some range. Given a distribution µ over
State and an expression e with finite range S (say, the booleans), e is uniform in µ if for all a and a′ in S, we have

Pr
m∼µ
[¹eºm= a] = Pr

m∼µ
[¹eºm= a′].

When µ is the output distribution of a program c, uniformity follows from the PRHL judgment

∀a, a′ ∈ S, ` c ∼ c : (=) =⇒ e〈1〉= a↔ e〈2〉= a′.

This reduction is a direct consequence of Proposition 2.1.12. Moreover, the resulting judgment is ideally suited to
relational verification since it relates two copies of the same program c.

Handling independence is only a bit more involved. Given a distribution µ and expressions e, e′ with ranges S
and S ′, we say e and e′ are probabilistically independent if for all a ∈ S and a′ ∈ S ′, we have

Pr
m∼µ
[¹eºm= a ∧ ¹e′ºm= a′] = Pr

m∼µ
[¹eºm= a] · Pr

m∼µ
[¹e′ºm= a′].

This useful property roughly implies that properties involving e and e′ can be analyzed by focusing on e and e′

separately. When e and e′ are uniformly distributed, independence follows from uniformity of the tuple (e, e′) over
the product set S × S ′ so the previous reduction applies. In general, we can compare the distributions of e and e′

in two experiments: when both are drawn from the output distribution of a single execution, and when they are

109
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drawn from two independent executions composed sequentially. If the expressions are independent, these two
experiments should look the same. Concretely, independence follows from the relational judgment

∀a ∈ S, a′ ∈ S ′, ` c ∼ c(1); c(2) : Φ=⇒ e〈1〉= a ∧ e′〈1〉= a′↔ e(1)〈2〉= a ∧ e′(2)〈2〉= a′,

where c(1) and c(2) are copies of c with variables x renamed to x (1) and x (2) respectively; this construction is also
called self-composition since it sequentially composes c with itself (Barthe et al., 2011b). The pre-condition Φ
states that the three copies of each variable are initially equal: x〈1〉 = x (1)〈2〉 = x (2)〈2〉. Handling conditional
independence requires a slightly more complex encoding, but the general pattern remains the same: encode
products of probabilities by self-composition and equalities by lifted equivalence (↔)].

These reductions give a simple method to prove uniformity and independence. Other non-relational properties
could benefit from a similar approach, especially in conjunction with more sophisticated program transformations
in PRHL to relate different copies of the same sampling instruction.

Variable approximate couplings

As we saw in Chapters 4 and 5, approximate couplings are a powerful tool for proving differential privacy. To
further enhance the proof technique, we can consider more precise ways of reasoning about the ε and δ parameters.
To keep things simple, APRHL opts for the most straightforward approach: ε and δ are constants or logical variables,
independent of the program state. This choice is reflected in the form and interpretation of the judgments:

c1 ∼(ε,δ) c2 : Φ=⇒ Ψ,

where ε and δ are treated as as mathematical constants. This approach supports clean composition—we can
simply add up ε and δ parameters without regard to which variables are changed by the program—but it can be
more convenient to think of ε and δ as depending on the current state. For example, we may want to assert ε ≤ n
for a program variable n, representing some kind of counter.

However, it is not immediately clear what a state-dependent privacy parameter should mean, especially when
the state is randomized. To give a suitable interpretation, we can look to the notion of a privacy loss random
variable from the privacy literature. Roughly, the privacy parameter ε may be viewed as a function mapping
outputs to costs:

Pr
x∼µ1

[x = ξ]≤ exp(ε(ξ)) · Pr
x∼µ2

[x = ξ]

for every ξ in the support of µ1 and µ2. Then, µ1 induces a distribution ε](µ1) over privacy costs. If every cost in
the support of this distribution is bounded by a constant ε0, the output distributions µ1,µ2 satisfy the condition
required for ε0-differential privacy. (See the textbook by Dwork and Roth (2014) for a more thorough exposition.)

Albarghouthi and Hsu (2018) take inspiration from this idea and define an extension of approximate couplings
called variable approximate couplings. Unlike approximate couplings, which require a distance bound between
witnesses that is constant in ε over all pairs of samples, a variable approximate couplings allows ε to vary:

∀(a1, a2) ∈A1 ×A2, µL(a1, a2)≤ exp(ε(a1, a2)) ·µR(a1, a2)

where ε : A1 ×A2→ R is now a function. The result is a refinement of (ε, 0)-approximate coupling supporting a
more precise, randomized notion of privacy cost.

We can broadly compare reasoning in terms of variable approximate couplings with reasoning in terms of
approximate couplings (e.g., using a system like APRHL). The main difficulty with variable approximate couplings
is analyzing sequential composition: now that each coupling has multiple costs associated with different samples,
the cost after composing couplings may become quite complicated—we can’t simply add the costs together.
Furthermore, it isn’t clear how to handle the additive parameter δ for proving (ε,δ)-privacy. At the same time,
variable approximate couplings allow intuitive reasoning closer to the cost-based interpretation of privacy, where
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the privacy level ε is regarded as a dynamic, possibly randomized quantity that accumulates as the program
executes. Rather than bounding the cost by a constant at each stage of composition, we only need to bound the
cost at the end of the computation; this flexibility can support significantly simpler proofs.

Albarghouthi and Hsu (2018) use these richer couplings to support fully automated proofs of (ε, 0)-differential
privacy for challenging examples, including the Report-noisy-max and Sparse Vector mechanisms we saw in
Chapter 4. Roughly speaking, they encode valid approximate coupling proofs with standard Horn clauses and a
new kind of coupling constraint, and then solve the constraint systems with automated program verification and
synthesis techniques. Variable approximate couplings simplify their proofs in two ways. First, by allow the privacy
cost to be randomized during the analysis, there is no need to separate deterministic and randomized parts of the
state. Second, their proofs can leverage more sophisticated approximate couplings like the variable version of the
choice coupling from Section 4.8, making their invariants easier to discover automatically.

Expectation couplings

Probabilistic couplings and approximate couplings relate distributions over plain sets with no additional structure.
Many sets come with a notion of distance, like the Euclidean distance on real vectors or the Hamming distance on
finite sets. If d : A×A→ R+ is a distance function on a set A, the Kantorovich distance on distributions Distr(A)
is defined as

d](µ1,µ2)¬ min
µ∈Ω(µ1,µ2)

E
(a1,a2)∼µ

[d(a1, a2)],

where the minimum is taken over all couplings µ of (µ1,µ2). This is a well-studied notion in probability theory and
the theory of optimal transport, increasingly seeing applications in computer science and beyond (e.g., Desharnais,
Gupta, Jagadeesan, and Panangaden (2004); van Breugel and Worrell (2001a,b) consider logical aspects, Deng
and Du (2009) survey applications in computer science, and Villani (2008) explores the mathematical theory).
Intuitively, the Kantorovich distance lifts a distance d on the ground set to a distance d] on distributions, much like
how probabilistic liftings lift a relation R on the ground set to a relation R] on distributions. Varying the ground
distance recovers common distances on distributions as special cases.

Barthe, Espitau, Grégoire, Hsu, and Strub (2018) use the Kantorovich distance to define expectation coupling, a
quantitative extension of probabilistic coupling. Given two distributions µ1 and µ2 on a set A equipped with a
distance d, a coupling µ is a (d,δ)-expectation coupling if the expected value of d on µ is at most δ. To construct
and reason about these couplings, Barthe et al. (2018) develop a relational program logic EPRHL by augmenting
the pre- and post-conditions in PRHL judgments with pre- and post-distances:

c1 ∼ f c2 : {Φ;d}=⇒ {Ψ;d′}.

The function f : R→ R describes how the lifted post-distance can be bounded as a function of the pre-distance.
Judgments are valid when for any two input memories (m1, m2) satisfying the pre-condition Φ, there is an
(d′, f (d(m1, m2)))-expectation coupling of the two output distributions with support in Ψ. Intuitively, valid
judgments model Lipschitz-continuity or sensitivity, where the distance on input memories is d and the distance
on output distributions is the Kantorovich distance d′].
EPRHL judgments can be combined in various ways, reflecting the clean compositional properties of expectation

couplings. For instance, when f is a non-decreasing affine function (i.e., f (z) = α ·z+β with α,β ≥ 0), judgments
compose sequentially:

SEQ
` c1 ∼ f c2 : {Φ;d}=⇒ {Ψ;d′} ` c′1 ∼ f ′ c′2 : {Ψ;d′}=⇒ {Θ;d′′}

` c1; c′1 ∼ f ′◦ f c2; c′2 : {Φ;d}=⇒ {Θ;d′′}

The transitivity rule, which combines two judgments relating c1 ∼ c2 and c2 ∼ c3 into a judgment relating c1 ∼ c3,
fully internalizes the path coupling principle (Bubley and Dyer, 1997) we saw in Chapter 3.
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EPRHL is particularly useful for proving quantitative relational properties. In PRHL, as we noted in Section 2.3,
there is no way to reason about the probability of an event in the coupling. Our logic ×PRHL from Chapter 3 makes
the coupling more explicit, but the logic can only construct the product program, not reason about it. In contrast,
EPRHL judgments can directly express quantitative properties of the coupling with the pre- and post-distances.

To demonstrate, Barthe et al. (2018) use EPRHL to verify convergence for a Markov chain from population
dynamics, and for the Glauber dynamics. In contrast to our proof from Section 3.6, which required reasoning about
the product program and applying path coupling externally, the EPRHL proof can be carried out almost entirely
within the logic. Adding to the properties that can be handled, EPRHL can also verify that the Stochastic Gradient
Descent algorithm is uniformly stable, a quantitative property comparing a learning algorithm’s expected error on
two training sets (Bousquet and Elisseeff, 2002); this recently-proposed property is rapidly gaining currency in the
machine learning community as a way to prevent overfitting (Hardt, Recht, and Singer, 2016).

Couplings in the continuous case

To simplify our presentation, in this thesis we have focused on discrete distributions. However, programs sampling
from continuous distributions are quite common in the algorithms literature; many private algorithms, for instance,
use samples from real-valued distributions like the Gaussian distribution and the standard Laplace distribution.
Though most of our results should carry over, the continuous case introduces additional measure-theoretic
technicalities. Designing a verification system supporting continuous distributions—say, a program logic where
programs can sample from the Gaussian distribution—requires carefully handling these details.

While research historically evolved from exact liftings in PRHL to approximate liftings in APRHL, current
work on the continuous case has jumped directly to approximate liftings. As we discussed in Section 5.1, Sato
(2016) introduced a novel definition of approximate lifting without witness distributions in the continuous case,
developing a continuous version of APRHL. Sato derived his approximate lifting using a categorical construction
called codensity lifting of monads (also called >>-lifting), proposed by Katsumata and Sato (2015). Roughly
speaking, this operation turns a monad on a base category D into a (possibly indexed or graded) monad on
another category C , along a functor C → D. This approach gives a highly generic way to lift monads to new
categories, abstracting away many details about the specific categories. Codensity lifting also gives a more
principled construction in some sense, as the lifting satisfies certain universal properties. However, the high level
of abstraction can make it difficult to construct and manipulate these liftings; the current, clean form of Sato’s
lifting is followed significant simplifications after applying codensity lifting.

More recent work generalizes witness-based approximate liftings to the continuous case, giving an alternative,
more flexible construction of approximate liftings that is easier to work with. Sato, Barthe, Gaboradi, Hsu, and
Katsumata (2017) introduce span-based liftings, generalizing binary relations to categorical spans and supporting
a broad class of divergences beyond ε-distance with good composition properties. Roughly speaking, maps
between spans carry additional information needed for smooth composition in the continuous case. Sato and his
collaborators develop span-based liftings and a relational program logic to verify differential privacy and various
relaxations, including Rényi differential privacy (Mironov, 2017) and zero-concentrated differential privacy (Bun and
Steinke, 2016). When specialized to ε-distance, span-based liftings are equivalent to Sato’s witness-free liftings,
giving an approximate version of Strassen’s theorem in the continuous case.1

6.2 Promising directions

We envision further investigation along three broad axes: extending the theory, exploring new applications, and
automating the proof technique.

1Tetsuya Sato, personal communication.
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Theoretical directions

While the theory of probabilistic couplings has been well-developed in mathematics, our work suggests several
natural directions for further theoretical study.

Defining approximate couplings. Our definition of approximate lifting satisfies many clean theoretical proper-
ties, but it is not yet clear whether we have arrived at the right definition. More evidence is needed, possibly in
the form of other natural properties satisfied by approximate liftings, equivalences with other well-established
notions, or logical and categorical characterizations of approximate coupling; analogous results for probabilistic
liftings may provide a useful guide (Desharnais et al., 2002, 2003; Fijalkow et al., 2017; Larsen and Skou, 1991).

Furthermore, Barthe and Olmedo (2013) and Olmedo (2014) consider approximate liftings where the differ-
ential privacy distance dε (µ1,µ2) is generalized to any f -divergence, a broader class of distance-like measures
between distributions. While it is straightforward to adapt our approximate liftings to f -divergences, there is
currently little evidence this yields a good definition; for instance, a universal version of approximate lifting
(similar to Sato’s definition) for f -divergences is not known.

Completeness of the proof systems. While the proof systems of ×PRHL and APRHL are sound, we did not
establish completeness: valid judgments should be provable by applying the rules. Much like standard Hoare logic,
the best we can hope for is relative completeness. Assuming an oracle for formulas in the assertion logic, can the
proof system prove all valid judgments?

On this fundamental question, very little is known. For ×PRHL, relative completeness of standard Hoare logic
combined with some basic program transformations give relative completeness for terminating, deterministic
programs. However, the rules for random sampling are likely to be highly incomplete; for instance, there are
many couplings beyond bijection couplings. Furthermore, there may be more fundamental obstacles to relative
completeness: Kumar and Ramesh (2001) give an example of a Markov chain that is rapidly mixing but where no
causal coupling can establish this fact; all couplings encoded by ×PRHL are causal couplings. This negative result
doesn’t directly rule out relative completeness since rapid mixing is not expressible in the logic, but it does suggest
that the underlying coupling proof technique may be incomplete.

The situation is similar for APRHL. Our privacy proofs often use program transformations to compensate for
the incompleteness of the loop rules; these transformations could potentially be avoided given more advanced
loop rules or richer reasoning about the privacy parameters ε and δ. However, it is not clear what role the various
structural rules (e.g., [PW-EQ]) should play when proving completeness.

Enhancing our proof systems and identifying complete fragments for randomized programs—or even more
fundamentally, coming up with sensible notions of completeness for coupling proofs—are intriguing and challenging
directions for future theoretical work.

Connecting back to probabilistic bisimulation. Probabilistic liftings were first developed in the context of
probabilistic bisimulation (Larsen and Skou, 1991); it would be interesting to revisit this rich theory in light of our
connections. Approximate couplings, which support a multiplicative notion of approximation, appear to be new to
the probabilistic bisimulation literature.

New applications

The examples we have seen are drawn from classical coupling proofs in mathematics. While these case studies
concisely demonstrate various advanced features of the proof technique, they are perhaps less well-motivated
from the perspective of program verification. However, now that formal verification can leverage couplings, we
can search for applications to typical verification properties.

At the same time, there remains plenty of room to push the limits of coupling proofs on more theoretical
examples, especially using approximate couplings. For example, we only applied approximate couplings for
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proving (ε,δ)-differential privacy; variants of approximate couplings for reasoning about f -divergences, like
KL-divergence, Hellinger distance, and χ2 divergence, currently lack concrete applications. Other natural targets
include relaxations of differential privacy like random differential privacy (RDP) (Hall, Wasserman, and Rinaldo,
2013). For exact couplings, advanced constructions like coupling from the past (Propp and Wilson, 1996) and
variable length path couplings (Hayes and Vigoda, 2007) may suggest interesting ways to enrich relational reasoning.
We expect theoretically sophisticated examples will guide the development of formal verification for probabilistic
relational properties.

Proof automation

Throughout, we have presented program logic proofs on paper. Such proofs can be formalized in existing prototype
implementations of PRHL and APRHL in the EASYCRYPT system (Barthe et al., 2013b), an interactive proof assistant.
To make the proof technique more practical, however, more investigation is needed into automating coupling
proofs. By eliminating much of the probabilistic reasoning, which pose significant challenges for automated solvers
today, coupling proofs may enable automated proofs for programs and properties where even manual, interactive
proofs would previously have been quite challenging. Realizing these gains in practice is a natural direction for
further investigation.

6.3 Bridging two theories

This thesis represents a confluence of ideas from two theories: coupling proofs from the theory of algorithms, and
program logics from the theory of formal verification. While mathematical rigor is a hallmark of both areas, the
two fields currently proceed on separate tracks. The theory of algorithms and complexity investigates quantitative
aspects of computation, like running time, space usage, and degree of approximation, while the theory of semantics
and formal verification explores the compositional structure of programs and how to reason about them. That
there should be two distinct theoretical branches is perhaps unsurprising; in many ways, the situation mirrors
traditional divisions between analysis and algebra in mathematics. However, what is more surprising is the wide
gulf between the two communities today. In many parts of the world, for instance, semantics and verification
don’t fall under the umbrella term Theoretical Computer Science (TCS).

Our results give a glimpse of the fruitful terrain that lies in between, and the potential gains in applying
perspectives and tools from both worlds. Formal verification stands to benefit from understanding how humans
reason about algorithms, while algorithms and complexity theory could achieve simpler proofs by generalizing
properties and focusing on composition. The time is ripe to bring these theories back into contact, and to see
where the conversation leads.



Appendix A

Soundness of ×PRHL

We prove soundness of the logic ×PRHL presented in Chapter 3, consisting of the logical rules in Figs. 3.1 to 3.3
and the asynchronous loop rule in Fig. 3.4.

We will need a pair of technical lemmas. First, distribution bind commutes with projections.

Lemma A.1.1. Let i ∈ {1,2}. Given µ ∈ SDistr(A1 ×A2) and f : A1 ×A2 → SDistr(B1 × B2), suppose gi : Ai →
SDistr(Bi) is such that for all (a1, a2) ∈ supp(µ), we have πi( f (a1, a2))≤ gi(ai). Then

πi(bind(µ, f ))≤ bind(πi(µ), gi).

Similarly, if for all (a1, a2) ∈ supp(µ) we have πi( f (a1, a2))≥ gi(ai), then

πi(bind(µ, f ))≥ bind(πi(µ), gi).

Proof. We consider the ≤ case with i = 1; the case i = 2 and the ≥ cases are similar. Let η¬ π1(bind(µ, f )). For
any element h ∈ B1,

η(h) =
∑

t∈B2

∑

(r,s)∈A1×A2

µ(r, s) · f (r, s)(h, t)

=
∑

(r,s)∈supp(µ)

µ(r, s)
∑

t∈B2

f (r, s)(h, t)

≤
∑

(r,s)∈supp(µ)

µ(r, s) · g1(r)(h)

=
∑

(r,s)∈A1×A2

µ(r, s) · g1(r)(h)

=
∑

r∈A1

π1(µ)(r) · g1(r)(h)

= bind(π1(µ), g1)(h).

Second, projections commute with monotone limits.

Lemma A.1.2. Let {µ(i)}i be a monotonically increasing sequence in SDistr(A1×A2) converging to a sub-distribution
µ. Then projections commute with limits:

π j

�

lim
i→∞

µ(i)
�

= lim
i→∞

π j

�

µ(i)
�

for j ∈ {1, 2}, and all limits exist.
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Proof. By unfolding definitions and applying the monotone convergence theorem, taking the discrete (counting)
measure over State (see, e.g., Rudin (1976, Theorem 11.28)).

Now we can show soundness of ×PRHL.

Theorem 3.3.1 (Soundness of ×PRHL). Let ρ be a logical context. If a judgment is derivable

ρ `
§

Φ

ª

c1
c2

§

Ψ

ª

É c×,

then it is valid:

ρ |=
§

Φ

ª

c1
c2

§

Ψ

ª

É c×.

Proof. By induction on the height of the proof derivation. In the base case the derivation consists of a single rule
with no ×PRHL premises; this rule must be one of the axiom rules: [SKIP], [ASSN], [SAMPLE], or the one-sided
variants. In the inductive case, the derivation ends in one of the other rules. By performing a case analysis on the
last rule in the derivation, we handle the base and inductive cases together.

We consider the two-sided rules first (Fig. 3.1), followed by the one-sided rules (Fig. 3.2), the structural rules
(Fig. 3.3), and finally the asynchronous loop rule (Fig. 3.4). Given soundness for the premises, we show the product
program in the conclusion satisfies the support condition and the marginal conditions in Definition 3.1.1. In all
cases let m1, m2 be two memories that satisfy the pre-condition of the conclusion, let µ× be the output distribution
of the product program with input (m1, m2), and let µ1 ¬ π1(µ×) and µ2 ¬ π2(µ×) be the two projections of
the output distribution. We will leave the logical context ρ implicit when taking the semantics ¹−º; the logical
variables play no role in the proof.

For the loop rules, recall from Fig. 2.1 that the semantics of a loop while e do c on initial memory m is defined
as the limit of its finite approximants:

µ(i)(m)¬







⊥ : i = 0∧ ¹eºm= true

unit(m) : i = 0∧ ¹eºm= false

bind(¹if e then cºm,µ(i−1)) : i > 0.

Case [SKIP] Trivial.

Case [ASSN] The support condition is clear since all program variables in e1〈1〉, e2〈2〉 are tagged with 〈1〉, 〈2〉
respectively. The marginal conditions are clear as well: given any two input memories satisfying the pre-
condition, the two output memories from c1 and c2 are point distributions where x1 is updated to e1 and x2
is updated to e2.

Case [SAMPLE] The support of µ× lies in

{(m′1, m′2) | ∃v, m′1(x1) = v ∧m′2(x2) = f (v)}.

Since all output memories (m′1, m′2) in the support are equal to the input memories (m1, m2) on all variables
besides x1 and x2, the support condition is clear.

Now recall that all primitive distributions d1, d2 are uniform over finite sets. Hence supp(d1) and supp(d2)
are finite, and since there is a bijection f : supp(d1)→ supp(d2), the supports have the same size n. For
every v ∈ supp(d1), we have

µ1(m1[x1 7→ v]) = 1/n



APPENDIX A. SOUNDNESS OF ×PRHL 117

and µ1(m′) = 0 otherwise. By the semantics of the sampling command, µ1 = ¹c1ºm1 so the first marginal
condition is satisfied. Since f is injective, for every v ∈ supp(d1) we have

µ2(m2[x2 7→ f (v)]) = 1/n.

and µ2(m′) = 0 otherwise. Since f is surjective, for every v ∈ supp(d2) we have

µ2(m2[x2 7→ v]) = 1/n,

giving µ2 = ¹c2ºm2 and the second marginal condition.

Case [SEQ] Let the product programs in the premises be c× and c′×. By induction, these product programs satisfy
the support and marginal conditions for their respective judgments. To establish the conclusion, the support
condition is clear: by induction, the support of ¹c×º(m1, m2) lies in ¹Ψº and for any (m′1, m2)′ ∈ ¹Ψº, the
support of ¹c′×º(m

′
1, m′2) lies in ¹Θº.

It remains to show the marginal conditions. For i ∈ {1,2},

µi = πi(¹c×; c′×º(m1, m2))
= πi(bind(¹c×º(m1, m2),¹c′×º)) (semantics)

= bind(πi(¹c×º(m1, m2)),¹c′iº) (Lemma A.1.1 and induction)

= bind(¹ciºmi ,¹c′iº) (induction)

= ¹ci; c′iºmi . (semantics)

Case [COND] Let c×, c′× be the two product programs for the two premises. There are two cases: either e1 is true
in the first initial memory m1, or not. (Since (m1, m2) satisfy the pre-condition Φ, these two cases correspond
to e2 being true and false in the second initial memory m2.)

Suppose e1 is true in m1. Then e1〈1〉 is true in (m1, m2) and the product program is equivalent to simply
executing c× on (m1, m2). Since the two initial memories (m1, m2) satisfy Φ, by induction on the first premise,
the support of the product program lies in ¹Ψº and the marginals satisfy

µ1 = π1(¹c1ºm1) and µ2 = π2(¹c2ºm2).

Since e1〈1〉 and e2〈2〉 are both true in (m1, m2), we also have

µ1 = π1(¹if e1 then c1 else c′1ºm1) and µ2 = π2(¹if e2 then c2 else c′2ºm2).

Hence, both the marginal and support conditions hold when e1 is true in m1.

The other case, where e1〈1〉 and e2〈2〉 are false in (m1, m2), follows by the second premise.

Case [WHILE] Let the product program in the conclusion be while e1〈1〉 do c× and let µ(i)(m1, m2) be its i-th
approximants. Define µ(i)1 ¬ π1◦µ(i),µ

(i)
2 ¬ π2◦µ(i) to be the first and second marginals of the approximants,

and η(i)1 ,η(i)2 to be the i-th approximants of the loops while e1 do c1 and while e2 do c2, respectively.

Let’s consider the support condition first. We prove if (m1, m2) satisfies Φ, then µ(i)(m1, m2) has support
contained in ¹Φ∧¬e1〈1〉º for every i by induction. The base case i = 0 is clear. For the inductive step i > 0
there are two cases. If e1〈1〉 is false in (m1, m2), then µ(i)(m1, m2) = unit(m1, m2). Otherwise if e1〈1〉 is
true, then

µ(i)(m1, m2) = bind(¹c×º(m1, m2),µ
(i−1)).



APPENDIX A. SOUNDNESS OF ×PRHL 118

By the outer induction hypothesis applied to the premise, the support of ¹c×º(m1, m2) lies in ¹Φ∧¬e1〈1〉º.
The inner induction hypothesis applied to µ(i−1) shows µ(i)(m1, m2) also has support in ¹Φ ∧ ¬e1〈1〉º,
completing the inner induction. Since this holds for all i, the limit sub-distribution

lim
i→∞

µ(i)(m1, m2) = ¹while e1〈1〉 do c×º(m1, m2)

also has support in ¹Φ∧¬e1〈1〉º as desired.

Next, we turn to the marginal conditions. We first show the projections of the approximants of the product
program are equal to the approximants for the individual programs, concluding the marginal conditions in the
limit. Let (m1, m2) be memories satisfying Φ. We claim π1(µ(i)(m1, m2)) = η

(i)
1 (m1) and π2(µ(i)(m1, m2)) =

η
(i)
2 (m2) for every i.

The claim follows by induction on i. The base case i = 0 is immediate—since (m1, m2) satisfy Φ, either
e1〈1〉 = e2〈2〉 = true or e1〈1〉 = e2〈2〉 = false. The inductive step i > 0 is more interesting. Unrolling the
approximants one step, we have

µ(i)(m1, m2) = bind(¹if e1〈1〉 then c×º(m1, m2),µ
(i−1))

η
(i)
1 (m1) = bind(¹if e1 then c1ºm1,η(i−1)

1 )

η
(i)
2 (m2) = bind(¹if e2 then c2ºm2,η(i−1)

2 ).

If e1〈1〉 is false in (m1, m2), then all three conditionals are equivalent to skip so

µ(i) = µ(i−1) and η
(i)
1 = η

(i−1)
1 and η

(i)
2 = η

(i−1)
2 ;

we conclude by the inductive hypothesis. Otherwise, e1〈1〉 and e2〈2〉 are true in (m1, m2) so the same branch
is taken in all three approximants:

µ(i)(m1, m2) = bind(¹c×º(m1, m2),µ
(i−1))

η
(i)
1 (m1) = bind(¹c1ºm1,η(i−1)

1 )

η
(i)
2 (m2) = bind(¹c2ºm2,η(i−1)

2 ).

By the outer induction hypothesis on the premise of the rule (noting that e1 is true in m1),

π1(¹c×º(m1, m2)) = ¹c1ºm1 and π2(¹c×º(m1, m2)) = ¹c2ºm2.

By the inner induction hypothesis, µ(i−1)(m1, m2) has projections η(i−1)
1 (m1) and η(i−1)

2 (m2), so Lemma A.1.1
gives

π1(µ
(i)(m1, m2)) = η

(i)
1 (m1) and π2(µ

(i)(m1, m2)) = η
(i)
2 (m2)

for every i. Taking the limit as i tends to∞, we have the marginal conditions

¹while e j do c jº(m j)¬ lim
i→∞

η
(i)
j (m j)

= lim
i→∞

π j(µ
(i)(m j))

= π j

�

lim
i→∞

µ(i)(m j)
�

¬ π j(¹while e1〈1〉 do c×º(m1, m2))

for j = {1, 2}. (We may interchange marginals and limits by Lemma A.1.2 since {µ(i)(m j)}i is monotonically
increasing by definition.)
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Case [ASSN-L] ([ASSN-R] similar) Trivial.

Case [SAMPLE-L] ([SAMPLE-R] similar) Let d1 have support with size n. The support condition is clear. For the
marginal condition, note

µ×(m1[x1 7→ v], m2) = 1/n

for every v ∈ supp(d1), and zero otherwise. Hence,

µ1(m1([x1 7→ v]) = 1/n

for every v ∈ supp(d1), and zero otherwise, while µ2 is the point distribution at m2. The semantics of
x1

$← d1 and skip gives the marginal conditions.

Case [COND-L] ([COND-R] similar) There are two cases: either e1〈1〉 is true in (m1, m2), or not. On input
(m1, m2), the product program has the same semantics as c and c′ in the respective cases, hence the support
condition follows by induction using the support condition in the first and second premises respectively.

The marginal conditions are similar. If e1〈1〉 is true in (m1, m2), then the product program has the same
semantics as c, and the first program if e1 then c1 else c′1 has the same semantics as c1. Hence, the marginal
conditions follow by induction using the marginal condition from the first premise.

In the other case, e1〈1〉 is false in (m1, m2) and the product program has the same semantics as c′, and on
m1 the first program if e1 then c1 else c′1 has the same semantics as c′1. Hence, the marginal conditions
follow by induction using the marginal condition from the second premise.

Case [WHILE-L] ([WHILE-R] similar) Let the final product program be while e1〈1〉 do c× with i-th approximants
µ(i)(m1, m2). Define µ(i)1 ¬ π1 ◦µ(i),µ

(i)
2 ¬ π2 ◦µ(i) to be the first and second marginals of the approximants,

and η(i) to be the i-th approximants of the loop while e1 do c1.

For the support condition, we show if (m1, m2) satisfies Φ then µ(i)(m1, m2) has support contained in
¹Φ∧¬e1〈1〉º for every i by induction on i. The base case i = 0 is clear. For the inductive step i > 0, there
are two cases. If e1〈1〉 is false in (m1, m2), then µ(i)(m1, m2) = unit(m1, m2) and we are done. Otherwise if
e1〈1〉 is true, then

µ(i)(m1, m2) = bind(¹c×º(m1, m2),µ
(i−1)).

By the outer induction hypothesis applied to the premise, the support of ¹c×º(m1, m2) lies in ¹Φ∧¬e1〈1〉º. The
inner induction hypothesis applied to µ(i−1) implies µ(i)(m1, m2) also has support contained in ¹Φ∧¬e1〈1〉º,
completing the inner induction. Since this is true for all i, the limit sub-distribution

lim
i→∞

µ(i)(m1, m2) = ¹while e1〈1〉 do c×º(m1, m2)

also has support in ¹Φ∧¬e1〈1〉º as desired.

Now we turn to the marginal conditions. We show the projections of the approximant of the product program
are equal to the approximants for the individual programs, concluding the marginal conditions in the limit.
Let (m1, m2) be any memories satisfying Φ. We claim π1(µ(i)(m1, m2)) = η

(i)
1 (m1) and π2(µ(i)(m1, m2)) is a

point sub-distribution with all mass on m2, for every i.

The claim follows by induction on i. The base case i = 0 is clear—e1〈1〉 is either true or false. If e1〈1〉 is
true, µ(i) = unit(m1, m2), η

(i)
1 = unit(m1), and π2(µ(i)) = unit(m2). If e1〈1〉 is false, then all approximants

are the zero sub-distribution ⊥.

The inductive step i > 0 is more interesting. Unrolling the approximants one step, we have

µ(i)(m1, m2) = bind(¹if e1〈1〉 then c×º(m1, m2),µ
(i−1))
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η
(i)
1 (m1) = bind(¹if e1 then c1ºm1,η(i−1)

1 ).

If e1〈1〉 is false in (m1, m2), then both conditionals are equivalent to skip. Hence

µ(i) = µ(i−1) and η
(i)
1 = η

(i−1)
1 ,

and we conclude by the induction on i. Otherwise, e1〈1〉 is true in (m1, m2). In this case, the conditional
branch is taken in both programs, so

µ(i)(m1, m2) = bind(¹c×º(m1, m2),µ
(i−1))

η
(i)
1 (m1) = bind(¹c1ºm1,η(i−1)

1 ).

By the outer induction hypothesis on the premise of the rule (noting that e1〈1〉 is true),

π1(¹c×º(m1, m2)) = ¹c1ºm1

π2(¹c×º(m1, m2)) = ¹skipºm2 = unit(m2).

The inner induction hypothesis shows the first marginal of µ(i−1)(m1, m2) is η(i−1)
1 (m1); Lemma A.1.1 estab-

lishes π1(µ(i)(m1, m2)) = η
(i)
1 (m1). Similarly, by the inner induction hypothesis showing the second marginal

of µ(i−1)(m1, m2) is a point mass at m2, we establish the same for the second marginal of µ(i)(m1, m2). Further-
more, since the weight of a sub-distribution is preserved under projections, we also know π2(µ(i)(m1, m2))
is a point sub-distribution at m2 with weight |µ(i)(m1, m2)|.
Now we take limits to obtain the first marginal condition:

η1(m1) = lim
i→∞

η
(i)
1 (m j) = lim

i→∞
π1(µ

(i)(m1, m2)) = π1

�

lim
i→∞

µ(i)(m1, m2)
�

= π1(µ×),

interchanging limits and projections by Lemma A.1.2, since {µ(i)(m1, m2)}i is monotonically increasing.

For the second marginal we have
π2(µ×) = unit(m2) · |µ×|.

By the premise, the loop while e1 do c1 is lossless. Hence,

1= |η1(m1)|= |µ×|

and the second projection of µ× is simply unit(m2) = ¹skipºm2 as claimed.

Case [CONSEQ] Trivial.

Case [EQUIV] Trivial.

Case [CASE] By case analysis on whether e is true in (m1, m2), using essentially the same reasoning as in [CASE],
[COND-L], or [COND-R].

Case [FRAME] The marginal conditions are clear by induction. Let V be the set of variables that are not in MV(c).
Since Θ has free variables in V , we can interpret Θ as a predicate on memories restricted to V . Then initially
(m1[V ], m2[V ]) ∈ ¹Θº. Since c does not modify variables in V , the support of µ× is contained in

{(m′1, m′2) | m
′
1[V ] = m1[V ]∧m′2[V ] = m2[V ]} ⊆ ¹Θº.

Hence the support condition is satisfied as well.
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Case [WHILE-GEN] We label the premises for easy reference:

|= Φ→ (e1〈1〉 ∨ e2〈2〉) = e (A.1)

|= Φ∧ e→ p0 ⊕ p1 ⊕ p2 (A.2)

|= Φ∧ p0 ∧ e→ e1〈1〉= e2〈2〉 (A.3)

|= Φ∧ p1 ∧ e→ e1〈1〉 ∧Φ1〈1〉 (A.4)

|= Φ∧ p2 ∧ e→ e2〈2〉 ∧Φ2〈2〉 (A.5)

Φ1 |=while e1 ∧ p1 do c1 lossless (A.6)

Φ2 |=while e2 ∧ p2 do c2 lossless (A.7)

`
§

Φ∧ e ∧ p0

ª

(if e1 then c1)K1

(if e2 then c2)K2

§

Φ

ª

É c′0 (A.8)

`
§

Φ∧ e1 ∧ p1

ª

c1
skip

§

Φ

ª

É c′1 (A.9)

`
§

Φ∧ e2 ∧ p2

ª

skip
c2

§

Φ

ª

É c′2 (A.10)

Let θ× be the semantics of the product program in the conclusion and let θ (i) be its i-th approximants. For
the support condition, we first show

supp(θ (i)(a1, a2)) ⊆ ¹Φ∧¬e1〈1〉 ∧ ¬e2〈2〉º

for every i and (a1, a2) satisfying Φ. The proof is by induction on i. The base case i = 0 is clear: if e is false
in (a1, a2) then θ (0)(a1, a2) = unit(a1, a2), otherwise if e is true then θ (0)(a1, a2) =⊥, so in both cases we
have the desired support.

For the inductive step i > 0, if e is false in (a1, a2) then θ (i)(a1, a2) = unit(a1, a2) and the support condition
is satisfied. Otherwise, we unfold the product program one step giving three cases:

θ (i)(a1, a2) =







bind(¹c′0º(a1, a2),θ (i−1)) : ¹p0º(a1, a2) = true

bind(¹c′1º(a1, a2),θ (i−1)) : ¹p1º(a1, a2) = true

bind(¹c′2º(a1, a2),θ (i−1)) : ¹p2º(a1, a2) = true.

Exactly one of the three cases holds, by Eq. (A.2). By the outer induction hypothesis, the premises of the rule
(Eqs. (A.8) to (A.10)) show that in the three cases, the corresponding product program c′0, c′1, c′2 on input
memory (a1, a2) produces a sub-distribution with support in ¹Φº. Hence θ (i)(a1, a2) has the desired support
using the inner induction hypothesis on θ (i−1). Passing to the limit, we conclude the support condition:

supp(θ×(m1, m2)) = supp
�

lim
i→∞

θ (i)(m1, m2)
�

⊆ ¹Φ∧¬e1〈1〉 ∧ ¬e2〈2〉º.

Next, we turn to the marginal conditions. Let η1,η2 : State → SDistr(State) be the semantics of the
loops while e1 do c1 and while e2 do c2, and let η(i)1 ,η(i)2 : State→ SDistr(State) be their respective i-th
approximants. We show for every i and every (a1, a2) satisfying the invariant Φ, we have

η
(i)
1 (a1)≤ π1(θ×(a1, a2)) (A.11)

π1(θ
(i)(a1, a2))≤ η1(a1) (A.12)

η
(i)
2 (a2)≤ π2(θ×(a1, a2)) (A.13)
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π2(θ
(i)(a1, a2))≤ η2(a2). (A.14)

Taking limits as i tends to infinity will give the desired marginal conditions.

We begin with Eq. (A.11) by induction on i. For the base case i = 0, if e is false in (a1, a2) then both sides
are equal to unit(a1). Otherwise, if e and e1〈1〉 are true, then both sides are equal to ⊥. Finally, if e is true
and e1〈1〉 is false, then η(0)1 (a1) = unit(a1) by Eq. (A.1). In this case, e2〈2〉 must be true. By Eq. (A.5), we
are in case p2 and the product program executes c′2. By the marginal condition from premise Eq. (A.10), c′2
preserves a1 so e1〈1〉 remains false. Hence,

θ×(a1, a2) = ¹while e2〈2〉 ∧ p2 do c′2º(a1, a2).

By reasoning analogous to the case [WHILE-R]with Eq. (A.7) and the outer inductive hypothesis on Eq. (A.10),
we have the marginal condition

π1(θ×(a1, a2)) = unit(a1) = η
(0)
1 (a1)

establishing the base case.

Next, we consider the inductive case i > 0. If e is false in (a1, a2), then e1〈1〉 is false in a1 and hence
η
(i)
1 (a1) = π1(θ×(a1, a2)) = unit(a1). Otherwise, e is true and there are three subcases.

Subcase for Eq. (A.11): p0 is true. If p0 is true in (a1, a2), then e1〈1〉 = e2〈2〉 are also true by Eq. (A.3).
First, suppose i = K1. Unrolling the loops gives

θ×(a1, a2) = bind(¹c′0º(a1, a2),θ×)

η
(K1)
1 (a1) = bind(¹(if e1 then c1)

K1
ºa1,η(0)1 ).

The marginal condition from the induction hypothesis on premise Eq. (A.8) gives

π1(¹c′0º(a1, a2)) = ¹(if e1 then c1)
K1
º(a1);

by the support condition, supp(¹c′0º(a1, a2)) ⊆ ¹Φº. Furthermore, the base case for the inner induction

yields η(0)1 (b1)≤ π1(θ×(b1, b2)) for every (b1, b2) ∈ ¹Φº, so Lemma A.1.1 gives

η(K1)(a1)≤ π1(θ×(a1, a2)).

Now suppose i < K1. From the previous case and monotonicity, we have

η
(i)
1 (a1)≤ η

(K1)
1 (a1)≤ π1(θ×(a1, a2)).

With the cases i ≤ K1 covered, we turn to the remaining cases i > K1. Unrolling the loops:

θ×(a1, a2) = bind(¹c′0º(a1, a2),θ×)

η
(i)
1 (a1) = bind(¹(if e1 then c1)

K1
ºa1,η(i−K1)

1 ).

The marginal condition from the induction hypothesis on premise Eq. (A.8) gives

π1(¹c′0º(a1, a2)) = ¹(if e1 then c1)
K1
ºa1;

by the support condition, we have ¹c′0º(a1, a2) ⊆ ¹Φº. Furthermore, by the inner inductive hypothesis

for η(i−K1) we have η(i−K1)
1 (b1)≤ π1(θ×(b1, b2)) for every (b1, b2) ∈ ¹Φº, so Lemma A.1.1 shows

η(i)(a1)≤ π1(θ×(a1, a2))

as desired.
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Subcase for Eq. (A.11): p1 is true. If p1 is true in (a1, a2), then e1〈1〉 is also true by Eq. (A.4). Unrolling
the loops:

θ×(a1, a2) = bind(¹c′1º(a1, a2),θ×)

η
(i)
1 (a1) = bind(¹c1ºa1,η(i−1)

1 ).

The induction hypothesis on premise Eq. (A.9) gives π1(¹c′1º(a1, a2)) = ¹c1ºa1; by the support con-
dition, we also have ¹c′1º(a1, a2) ⊆ ¹Φº. Furthermore, by the inner induction hypothesis we have

η
(i−1)
1 (b1)≤ π1(θ×(b1, b2)) for every (b1, b2) ∈ ¹Φº, so Lemma A.1.1 yields

η(i)(a1)≤ π1(θ×(a1, a2)).

Subcase for Eq. (A.11): p2 is true. If p2 is true in (a1, a2), then e2〈2〉 is true by Eq. (A.5). Define

η¬ ¹while e ∧ p2 do c′2º(a1, a2).

We show the equivalence

¹while e ∧ p2 do c′2º(a1, a2) = ¹while e2〈2〉 ∧ p2 do c′2º(a1, a2) (A.15)

by taking the approximants σ(i) and τ(i) of the left and right sides and proving

σ(i)(b1, b2) = τ
(i)(b1, b2)

for every (b1, b2) ∈ ¹Φº. The proof is by induction on i, using supp(τ(i))(b1, b2) ⊆ ¹Φº from the
support condition from premise Eq. (A.10), and

|= Φ→ (e ∧ p2↔ e2〈2〉 ∧ p2)

from Eqs. (A.1) and (A.5).
Using the equivalence Eq. (A.15), we can transform η and show the following:

supp(η) ⊆ ¹Φ∧¬(e ∧ p2)º (A.16)

π1(η) = unit(a1) (A.17)

Both points follow by reasoning similar to the case for [WHILE-R], using premise Eq. (A.10) and the
lossless condition Eq. (A.7). The first point also uses supp(η) ⊆ ¹¬(e ∧ p2)º, by definition of η.
Returning to the sub-case, if e1〈1〉 is true, unrolling the product program gives

θ×(a1, a2) = bind(¹while e ∧ p2 do c′2º(a1, a2),θ×).

Since the guard e ∧ p2 is false in supp(η) and e1 is true in the first initial memory a1, Eq. (A.16) gives

supp(η) ⊆ ¹Φ∧ e1〈1〉 ∧ ¬(e ∧ p2)º ⊆ ¹Φ∧ e ∧¬p2º

where the second inclusion is because e1 implies e (by Eq. (A.1)), so p2 must be false. By Eq. (A.2)
either p0 or p1 must be true in the support of η. Using Eq. (A.17) to show η(r1, r2) > 0 only when
r1 = a1, we compute:

π1(θ×(a1, a2)) = π1

 

∑

(r1,r2)∈¹Φ∧e∧¬p2º

η(r1, r2) · θ×(r1, r2)

!
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= π1

 

∑

r2:(a1,r2)∈¹Φ∧e∧¬p2º

η(a1, r2) · θ×(a1, r2)

!

=
∑

r2:(a1,r2)∈¹Φ∧e∧¬p2º

η(a1, r2) ·π1(θ×(a1, r2))

=
∑

r2:(a1,r2)∈¹Φ∧e∧p0º

η(a1, r2) ·π1(θ×(a1, r2))

+
∑

r2:(a1,r2)∈¹Φ∧e∧p1º

η(a1, r2) ·π1(θ×(a1, r2))

≥
∑

r2:(a1,r2)∈¹Φ∧e∧p0º

η(a1, r2) ·η
(i)
1 (a1) +

∑

r2:(a1,r2)∈¹Φ∧e∧p1º

η(a1, r2) ·η
(i)
1 (a1)

=

 

∑

r2:(a1,r2)∈¹Φº

η(a1, r2)

!

·η(i)1 (a1)

where on the third line we interchange projection and the sum by Lemma A.1.2, and the inequality is
from the cases where p0 and p1 are true. Equations (A.16) and (A.17) show

∑

r2:(a1,r2)∈¹Φº

η(a1, r2) = |π1(η)|= 1

and so π1(θ×(a1, a2))≥ η
(i)
1 (a1) as desired.

If e1〈1〉 is false, unrolling the loops gives

θ×(a1, a2) = bind(¹while e ∧ p2 do c′2º(a1, a2),θ×)

η
(i)
1 (a1) = bind(¹skipºa1,η(i−1)

1 ).

Equation (A.17) implies

π1(¹while e ∧ p2 do c′2º(a1, a2)) = π1(η) = unit(a1) = ¹skipºa1.

Furthermore Eq. (A.16) implies supp(η) ⊆ ¹Φº, so we apply Lemma A.1.1 with the induction hypothesis
η
(i−1)
1 (b1)≤ θ×(b1, b2) for all (b1, b2) ∈ ¹Φº to conclude

η
(i)
1 (a1)≤ π1(θ×(a1, a2)).

This completes the inductive case i > 0, establishing Eq. (A.11).

Next, we establish Eq. (A.12) by induction on i. For the base case i = 0, if e is true in (a1, a2) then

θ (0)(a1, a2) =⊥≤ η1(a1).

Otherwise if e is false, then e1 must be false in a1 as well and so

π1(θ
(0)(a1, a2)) = a1 = η1(a1).

Now we consider the inductive step i > 0. Again if e is false in (a1, a2) then both sides are ⊥ and the claim
is clear. Otherwise if e is true, there are three cases.
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Subcase for Eq. (A.12): p0 is true. If p0 is true, then we unfold the loops:

θ (i)(a1, a2) = bind(¹c′0º(a1, a2),θ
(i−1))

η1(a1) = bind(¹(if e1 then c1)
K1
º(a1),η1).

By the induction hypothesis, for every (b1, b2) ∈ ¹Φº we have π1(θ (i−1)(b1, b2)) ≤ η1(b1). By the
marginal condition from the outer induction hypothesis for the premise Eq. (A.8), we also have

π1(¹c′0º(a1, a2)) = ¹(if e1 then c1)
K1
ºa1.

The support condition from the same induction hypothesis shows

¹c′0º(a1, a2) ⊆ ¹Φº

so by Lemma A.1.1, we conclude
π1(θ

(i)(a1, a2))≤ η1(a1).

Subcase for Eq. (A.12): p1 is true. If p1 is true, then e1 is true in a1 by Eq. (A.4). Unfolding:

θ (i)(a1, a2) = bind(¹c′1º(a1, a2),θ
(i−1))

η1(a1) = bind(¹if e1 then c1ºa1,η1) = bind(¹c1ºa1,η1).

By the induction hypothesis, for every (b1, b2) ∈ ¹Φº we have π1(θ (i−1)(b1, b2)) ≤ η1(b1). By the
marginal condition from the outer induction hypothesis for the premise Eq. (A.9), we get

π1(¹c′1º(a1, a2)) = ¹c1ºa1.

Lemma A.1.1 establishes
π1(θ

(i)(a1, a2))≤ η1(a1).

Subcase for Eq. (A.12): p2 is true. If p2 is true, then e2 is true in a2 by Eq. (A.5). Unfolding:

θ (i)(a1, a2) = bind(¹c′2º(a1, a2),θ
(i−1))

η1(a1) = bind(¹skipºa1,η1).

By the induction hypothesis, for every (b1, b2) ∈ ¹Φº we have π1(θ (i−1)(b1, b2)) ≤ η1(b1). By the
marginal condition from the outer induction on the premise Eq. (A.10), we get

π1(¹c′2º(a1, a2)) = ¹skipºa1.

Lemma A.1.1 establishes
π1(θ

(i)(a1, a2))≤ η1(a1).

This completes the inductive case i > 0, establishing Eq. (A.12). By taking limits in Eqs. (A.11) and (A.12)
and interchanging limits and projections (Lemma A.1.2), we have:

π1(θ×(a1, a2))≤ η1(a1)≤ π1(θ×(a1, a2))

and hence equality holds, showing the first marginal condition.

The remaining equations Eqs. (A.13) and (A.14) for the second marginal condition follow by a symmetric
argument, proving soundness of the rule.

This completes the induction, establishing soundness of ×PRHL.
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Soundness of APRHL

The version of the logic APRHL we saw is similar to existing presentations of APRHL (cf. Barthe et al. (2013c);
Barthe and Olmedo (2013); Olmedo (2014)). The main differences are our definition of approximate lifting
(Definition 4.2.2), which is a variant of the approximate lifting introduced by Barthe and Olmedo (2013) and
Olmedo (2014) with better theoretical properties, and the new proof rules introduced in Chapters 4 and 5.

We prove soundness of this version of APRHL, consisting of Figs. 4.1 to 4.5, 5.1, 5.4 and 5.6.

Theorem 4.3.2 (Soundness of APRHL). Let ρ be a logical context. If a judgment is derivable

ρ ` c1 ∼(ε,δ) c2 : Φ=⇒ Ψ,

then it is valid:
ρ |= c1 ∼(ε,δ) c2 : Φ=⇒ Ψ.

Proof. By induction on the height of the proof derivation. We consider the two-sided rules first (Fig. 4.1), followed
by the one-sided rules (Fig. 4.2), and the structural rules (Fig. 4.3). The new rules (Figs. 4.4, 4.5, 5.1, 5.4 and 5.6)
were proved sound in Chapters 4 and 5; we give pointers to the relevant lemmas.

If the premises are valid and we have two inputs m1, m2 that satisfy the pre-condition, we must construct
witnesses µL ,µR of the approximate lifting; namely, they must satisfy the support condition, the marginal conditions,
and the distance condition in Definition 4.2.2. Let µ1 and µ2 be the output distributions from inputs m1 and
m2 respectively. Throughout, we will leave the logical context ρ implicit when taking the semantics ¹−º; these
constants play no role in the proof.

Case [SKIP] Trivial; take µL = µR = unit(m1, m2).

Case [ASSN] Trivial; take µL = µR = unit(m1[x1 7→ v1], m2[x2 7→ v2]) with vi ¬ ¹eiºmi .

Case [LAP] Consequence of soundness for [LAPGEN] (Theorem 4.5.4)—in [LAPGEN], take k ¬ 0 and k′ ¬ k in
[LAP].

Case [SEQ] By induction, we have two maps

ηL ,ηR : State× State→ Distr(State? × State?)

such that for any memories a1, a2 satisfying Φ, the distributions ηL(a1, a2),ηR(a1, a2) witness the (ε,δ)-
approximate lifting with support Ψ, and we have maps η′L ,η′R : State × State → Distr(State? × State?)
such that for any memories a′1, a′2 satisfying Ψ, the distributions η′L(a

′
1, a′2),η

′
R(a

′
1, a′2) witness the (ε′,δ′)-

approximate lifting with support Θ.

126
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To construct the witnesses for the conclusion, we would like to combine the witnesses for the premises in
sequence. There is a slight mismatch, as ηL(a1, a2) and ηR(a1, a2) may place probability on pairs (m,?) or
(?, m). Accordingly, we first extend the domain of the second maps η′L ,η′R. We define

cηL(a
′
1, a′2)(x , y)¬ η′L(a

′
1, a′2)(x , y) if a′1, a′2 6= ?

cηL(a
′
1,?)(x ,?)¬ (¹c′1ºa′1)(x)

cηL(?, a′2)(?, y)¬ (¹c′2ºa′2)(y)
cηR(a

′
1, a′2)(x , y)¬ η′R(a

′
1, a′2)(x , y) if a′1, a′2 6= ?

cηR(a
′
1,?)(x ,?)¬ (¹c′1ºa′1)(x)

cηR(?, a′2)(?, y)¬ (¹c′2ºa′2)(y)

and zero otherwise. We now define the witnesses for the conclusion:

µL ¬ bind(ηL(m1, m2),cηL) and µR ¬ bind(ηR(m1, m2),cηR).

The support condition is clear, as

supp(ηL), supp(ηR) ⊆ ¹Ψº? and supp(cηL(a1, a2)), supp(cηR(a1, a2)) ⊆ ¹Θº?

for all a1, a2 ∈ ¹Ψº?, by induction and by definition of cηL ,cηR. The marginal conditions are also clear: by
the marginal condition on ηL and ηR, we have ηL(?, a2) = ηR(a1,?) = 0 for all (a1, a2). Also note that for
a′1 6= ? we have

π1(cηL(a
′
1, a′2)) = ¹c′1ºa′1,

and for a′2 6= ? we have
π2(cηR(a

′
1, a′2)) = ¹c′2ºa′2.

Therefore,

π1(µL) = π1(bind(ηL(m1, m2),cηL))
= bind(π1(ηL(m1, m2)),¹c′1º)
= bind(¹c1ºm1,¹c′1º)
= ¹c1; c′1ºm1

where the first equality is by Lemma A.1.1 and the marginal condition from the second premise, and the
second equality is by the marginal condition from the first premise. For the second marginal,

π2(µR) = π2(bind(ηR(m1, m2),cηR))
= bind(π2(ηR(m1, m2)),¹c′2º)
= bind(¹c2ºm2,¹c′2º)
= ¹c2; c′2ºm2.

Thus, it only remains to check the distance condition dε+ε′ (µL ,µR) ≤ δ + δ′. Let S ⊆ State? × State? be
any set of pairs memories, possibly including ?. We need to bound µL(S) ≤ exp(ε) · µR(S) + δ. Since
dε (ηL(m1, m2),ηR(m1, m2)) ≤ δ, there exist constants ζ(x1, x2) ≥ 0 (possibly depending on m1, m2) for
x1, x2 ∈ State? such that

ηL(m1, m2)(x1, x2)≤ exp(ε) ·ηR(m1, m2)(x1, x2) + ζ(x1, x2)
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and
∑

(x1,x2)∈State?×State?
ζ(x1, x2)≤ δ.

By definition, for all a′1, a′2 ∈ State? × State? we have

dε′
�

cηL(a
′
1, a′2),cηR(a

′
1, a′2)

�

≤ δ′.

Thus, we can directly compute (with all sums over State? × State?):

µL(S) =
∑

(x1,x2)

ηL(m1, m2)(x1, x2) · bηL(x1, x2)(S)

≤
∑

(x1,x2)

ηL(m1, m2)(x1, x2) ·min(exp(ε′)bηR(x1, x2)(S) +δ′, 1)

=
∑

(x1,x2)

ηL(m1, m2)(x1, x2) · (min(exp(ε′)bηR(x1, x2)(S), 1−δ′) +δ′)

= δ′ +
∑

(x1,x2)

ηL(m1, m2)(x1, x2) ·min(exp(ε′)bηR(x1, x2)(S), 1−δ′)

≤ δ′ +
∑

(x1,x2)

(exp(ε) ·ηR(m1, m2)(x1, x2) + ζ(x1, x2)) ·min(exp(ε′)bηR(x1, x2)(S), 1−δ′)

≤ δ′ +
∑

(x1,x2)

exp(ε) ·ηR(m1, m2)(x1, x2) · exp(ε′)bηR(x1, x2)(S) +
∑

(x1,x2)

ζ(x1, x2) · (1−δ′)

≤ δ′ +
∑

(x1,x2)

exp(ε) ·ηR(m1, m2)(x1, x2) · exp(ε′)bηR(x1, x2)(S) + (1−δ′)
∑

(x1,x2)

ζ(x1, x2)

≤ δ+δ′ + exp(ε + ε′)
∑

(x1,x2)

ηR(m1, m2)(x1, x2) · bηR(x1, x2)(S)

= δ+δ′ + exp(ε + ε′)µR(S).

This establishes the distance condition dε+ε′ (µL ,µR) ≤ δ + δ′. Thus, µL ,µR are witnesses to the desired
approximate lifting.

Case [COND] There are two cases. If e1 is true in m1, then e2 is also true in m2 by the pre-condition. Hence,
¹if e1 then c1 else c′1ºm1 = ¹c1ºm1 and ¹if e2 then c2 else c′2ºm2 = ¹c2ºm2, and we can take µL ,µR to be
the witnesses from the first inductive premise. Otherwise, if e1 is false in m1 then e2 is false in m2 and we
take µL ,µR to be the witnesses from the second inductive premise.

Case [WHILE] We prove that for every two memories (a1, a2) ∈ ¹Φº, if ¹evºa1 = k then we have

¹while e1 do c1ºa1 (Φ∧¬e1〈1〉)
](k·ε,k·δ)

¹while e2 do c2ºa2.

The proof is by induction on k. In the base case k = 0, by the premises e1 is false in a1 and hence e2 is false
in a2. Therefore, we have

¹skipºa1 (Φ∧¬e1〈1〉)
](0,0)

¹skipºa2

by taking witnesses ηL = ηR ¬ unit(a1, a2).

For the inductive step k > 0, if e1 is false in a1 then e2 is false in a2, both loops are equivalent to skip and
we take the witnesses as in the base case. Otherwise, e1 and e2 are both true and we need to show

¹c1;while e1 do c1ºa1 Φ
](k·ε,k·δ)

¹c2;while e2 do c2ºa2.
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From the premise, for every two memories (a1, a2) ∈ ¹Φº with e1 true in a1, we have

¹c1ºa1 (Φ∧ ev〈1〉< k)](ε,δ) ¹c2ºa2.

For every pair of memories b1, b2 satisfying Φ with ev < k in b1, the induction hypothesis gives

¹while e1 do c1ºb1 (Φ∧¬e1〈1〉)
]((k−1)·ε,(k−1)·δ)

¹while e2 do c2ºb2.

Combining these two witnesses with the reasoning from the case for [SEQ], we have

¹c1;while e1 do c1ºa1 (Φ∧¬e1〈1〉)
](k·ε,k·δ)

¹c2;while e2 do c2ºa2

as desired. Applying this claim for a1 ¬ m1, a2 ¬ m2 and k ¬ N establishes soundness of the rule.

Case [ASSN-L] ([ASSN-R] similar) Trivial; take µL = µR = unit(m1[x1 7→ v1], m2) with v1 ¬ ¹e1ºm1.

Case [LAP-L] ([LAP-R] similar) Let λ ∈ Distr(Z) be the distribution ¹Lapε(e)ºm1. We define the witnesses

µL(m1[x1 7→ v1], m2) = µR(m1[x1 7→ v1], m2)¬ λ(v1)

for every v1 ∈ Z, and zero otherwise. The support, marginal, and distance conditions are easy to check.

Case [COND-L] ([COND-R] similar) There are two cases. If e1 is true in m1, then

¹if e1 then c1 else c′1ºm1 = ¹c1ºm1.

We let µL ,µR be the witnesses from the first premise by induction. Otherwise if e1 is false in m1, we let
µL ,µR be the witnesses from the second premise by induction.

Case [WHILE-L] ([WHILE-R] similar) Trivial; by soundness of the PRHL version using Proposition 4.2.5.

Case [CONSEQ] Trivial; take the witnesses from the premise by induction.

Case [EQUIV] Trivial; take the witnesses from the premise by induction.

Case [CASE] There are two cases. If (m1, m2) ∈ ¹Θº, then the input memories satisfy the pre-condition in the first
premise. Otherwise if (m1, m2) ∈ ¹¬Θº, then the input memories satisfy the pre-condition in the second
premise. In either case, by induction we take the witnesses from the respective premise as the witnesses for
the conclusion.

Case [TRANS] By Lemma 5.1.9.

Case [FRAME] By the induction hypothesis, there are witnesses µ′L ,µ′R to an (ε,δ)-approximate lifting of the
two output distributions µ1,µ2 on inputs m1, m2. Let V = FV(Θ) be the free variables in Θ and suppose
m1[V ] = a1 and m2[V ] = a2, where m[V ] : V → V is the restriction of m to V , and a1, a2 are maps V → V.
Since c1 and c2 do not modify variables in V , memories m′1 in the support of µ1 satisfy m′1[V ] = a1 and
memories m′2 in the support of µ2 satisfy m′2[V ] = a2.

By Proposition 4.2.6 and the inductive hypothesis, we can find witnesses µL ,µR to an (ε,δ)-approximate
lifting of µ1,µ2 such that

supp(µL)∪ supp(µR) ⊆ ¹Ψº∩ {(m′1, m′2) | m
′
1[V ] = a1, m′2[V ] = a2} ⊆ ¹Ψ ∧Θº,

where the last inclusion holds because m1, m2 restricted to V satisfy Θ by assumption. Hence, µL ,µR witness
the desired approximate lifting.



APPENDIX B. SOUNDNESS OF APRHL 130

Case [LAPNULL] By Theorem 4.5.2.

Case [LAPGEN] By Theorem 4.5.4.

Case [PW-EQ] By Theorem 4.6.2.

Cases [UTB-L] and [UTB-R] By Theorem 5.2.3.

Case [LAPINT] By Theorem 5.3.5.

Case [WHILE-AC] By Theorem 5.4.10.
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