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Abstract

Program Analysis using Random Interpretation

by

Sumit Gulwani

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor George C. Necula, Chair

Random interpretation is a new program analysis technique that uses the power of ran-

domization to verify and discover program properties. It is inspired by, and combines the

strengths of, the two complementary techniques for program analysis: random testing and

abstract interpretation. Random testing is simple and finds real bugs in programs, but

cannot prove absence of bugs. Abstract interpretation, on the other hand, is a class of

sound and deterministic program analyses that find all bugs, but also report spurious bugs

(false positives). Often these analyses are complicated and have long running time. This

thesis describes few random interpretation based program analyses that are more efficient

as well as simpler than their deterministic counterparts that had been state-of-the-art for

almost 30 years. This thesis also describes how to extend some of these intraprocedural

analyses to an interprocedural setting. We also discuss our experience experimenting with

these algorithms.

Professor George C. Necula
Dissertation Committee Chair
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That which is static and repetitive is boring.
That which is dynamic and random is confus-
ing. In between lies art.

John Locke.

Chapter 1

Introduction

This dissertation proposes a new program analysis technique called random inter-

pretation. In this chapter, we first discuss some applications of program analysis followed

by currently used design choices for program analysis. We then give an introduction to

random interpretation, which exploits the sweet unexplored territory in the design space of

program analysis leading to more efficient, more precise, and even simpler algorithms.

1.1 Program Analysis

Program analysis involves reasoning about programs in order to verify or discover

their properties in an automatic manner.

Applications

Program analysis has applications in almost all areas of software development

including program correctness, compiler optimizations, and translation validation.

As software increasingly dominates our lives, failures in software have a tendency

to cause greater damage, including loss of lives. Studies estimate that software bugs cost

businesses worldwide more than 200 billion dollars annually. This has lead to an increased

focus on program analysis and verification tools. Programmers are increasingly using pro-

gram analysis tools to find bugs in their programs, or to prove the absence of bugs. These

may be low-level bugs like memory leaks, buffer overflows, or program-specific bugs like

violation of certain data-structure invariants.



CHAPTER 1. INTRODUCTION 2

Apart from programmers, compilers need program analysis to generate optimized

machine code. This allows programmers to program at a higher level of abstraction without

worrying about low-level performance issues.

Another interesting application of program analysis is in translation validation,

which is the problem of checking the semantic equivalence of programs before and after

compilation [PSS98, Nec00]. The need for translation validation arises because compilers

are complex pieces of software, and hence it is difficult to trust their output especially for

safety-critical systems.

Design Choices

When constructing a program analysis to analyze a certain kind of program prop-

erties, there are several design parameters that can be chosen like completeness, computa-

tional complexity, and simplicity. Completeness of an analysis is a measure of how precise

the analysis is (i.e., if some property holds of some program, then can the analysis reason

about it?). Since any non-trivial program analysis is in general undecidable [Lan92], what-

ever analysis one designs, there is a class of programs that the analysis cannot precisely

reason about, and it will report false positives (i.e., it will conservatively report that some

property may not hold of a program, even though it did). The obvious trade-off that comes

with increasing the precision of an analysis is that of increasing computational complexity

(or running time) of the analysis. Another factor that is sometimes important in designing

an analysis is the simplicity of the analysis in terms of its description or its implementation.

However, one factor that has remained constant in this design space is the sound-

ness of an analysis, i.e., when an analysis claims that a certain property holds of a certain

program, then it indeed is the case. It is interesting to consider if we can get any benefits

by trading off some soundness. It turns out that by allowing soundness to be probabilistic,

an analysis can be made more precise, more efficient and even simpler. By probabilistic

soundness, we mean that if a property does not hold of a program, then with very high

probability (over the random choices made by the analysis), the analysis will figure that

out. In other words, there is a small probability that the analysis will erroneously announce

that the property holds.

Such algorithms that have a small error probability are known as probabilistic

algorithms or randomized algorithms. These algorithms have been successfully used in sev-
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eral areas of computer science [MR95, PRRR01] like: computational geometry [Mul00],

simulation (Monte Carlo methods), network protocols (random standoff after contention),

parallel computing (breaking Byzantine cases [CD89]), cryptography (generating keys, pri-

mality testing [AH87], digital signatures), proof-complexity theory (probabilistically check-

able proofs [BGLR93]), etc. Even mathematical tools like Mathematica implement ran-

domized algorithms. However, randomized algorithms have not been considered seriously

in the area of program analysis and verification. We have improved the state-of-the-art for

some program analysis problems (which had held its place for almost 30 years) with use

of randomized algorithms, thereby demonstrating their potential in the area of program

analysis. The algorithms that we have developed are based on a common theme that we

call random interpretation.

1.2 Random Interpretation

Random interpretation can be seen as a combination of two complementary tech-

niques for program analysis: random testing [Ham94] and abstract interpretation [CC77].

Random testing is a dynamic program analysis technique that simply involves

testing a program on randomly chosen inputs. It is simple, efficient, and is quite commonly

used to find bugs in programs. However, random testing is unsound because it usually

cannot be used to prove absence of bugs in programs (since program inputs can potentially

take an infinite number of values).

On the other hand, abstract interpretation is a static program analysis technique

that is sound (and hence deterministic). This technique is so called because it involves

interpreting (or analyzing) an abstraction (or approximation) of a program. Since any non-

trivial program analysis is in general undecidable, any sound technique can only reason

about an abstraction of a program; this is what abstract interpretation does. As the ab-

straction gets richer, the operations required to carry out abstract interpretation get more

complicated and expensive. Examples of simple abstractions are signs abstraction [CC77]

(which tracks signs of the values that program variables can take) and parity abstraction

(which tracks parity of the values that program variables can take), while examples of

more non-trivial abstractions are linear arithmetic abstraction [Kar76] and uninterpreted

functions abstraction [RKS99].

Random interpretation is a new technique that combines the main ideas of these
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a := 0;
b := i;

a := i – 2; 
b := 2;

x := b – a;
y := i – 2b;

assert (x + y = 0); 
assert (x = a + i);

x := 2a + b;
y := b – 2i;

True

True False

False
*

*

Input: i

Figure 1.1: Example of a program with two assertions. The first assertion holds on all 4
paths, while the second one holds only on 3 paths (it does not hold when false branch is
taken at the first conditional and true branch at the second conditional).

two complementary techniques and thus attempts to retain the strengths of both these

techniques: simplicity and efficiency of random testing and soundness of abstract interpre-

tation. Random interpretation is almost as simple and efficient as random testing, and has

the advantage of offering better soundness guarantees. Random testing is not sound; it can

only help find bugs in programs but it cannot prove absence of bugs. On the other hand,

random interpretation can prove absence of bugs with very high probability. In that regard,

random interpretation is almost as sound as abstract interpretation. Abstract interpreta-

tion is 100% sound, while the soundness of random interpretation can be made arbitrarily

close to 100% by controlling various parameters of the algorithms.

We now explain these techniques in a little more detail by means of an example.

Consider the program in Figure 1.1 represented as a flowchart. Note that the program has
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one input variable i. It has two conditionals, both of which have been abstracted away as

non-deterministic branches, meaning that the conditional can non-deterministically evaluate

to either true or false irrespective of the program state before it. Thus, there are 4 execution

paths in this program. The program has two assertions at the end. The first assertion is

true since it holds on all the 4 paths in the program. The second assertion is false because

there is at least 1 path in the program on which it fails, in particular when the first branch

evaluates to false and the second branch evaluate to true. In fact, this path is the only path

in the program on which the assertion fails.

If one were to use random testing to decide the validity of these assertions, then

it is imperative that the execution path that violates the second assertion is tested. If the

execution of all paths is equally likely, then the probability of testing the violating path for

the second assertion is 1
4 . In general, a program with n such diamond structures has 2n

paths, and there may be exactly one violating path for a given false assertion; in that case

the probability of testing the violating path will be 1
2n , which is very small. Hence, quite

likely, random testing cannot detect all violating assertions, and hence is unsound.

On the other hand, we can (successfully) use abstract interpretation based tech-

niques to decide the validity of these assertions. This involves performing a forward analysis

on the program and computing the invariant at each program point from the invariants at

the preceding program points. In this case, these invariants are sets of linear equalities

among program variables. Figure 1.2 shows the program in Figure 1.1 annotated with such

invariants. Note that the invariant at the start of the program is simply the empty set of

linear equalities. This reflects that we do not assume anything about the input variables

of the program, and they can take any value. The invariants at program points π1 and

π2 are represented by the sets {a=0, b=i} and {a=i−2, b=2} respectively. These seem

easy to compute but in general this operation of computing the strongest post-condition

in an abstraction is non-trivial. The invariant at program point π3 is the strongest set of

linear equalities that are implied by the set of linear equalities at points π1 and π2. The set

{a+b=i} represents all such equalities. An operation that performs such a computation is

called the join operation and is usually the hardest operation in an abstract interpretation

based program analysis. Similarly, note that the join of the set of linear equalities at pro-

gram points π4 and π5 is represented by the set {a+b=i, x=−y}. Since {a+b=i, x=−y}

implies x + y = 0, we claim that the first assertion holds, and since {a+b=i, x=−y} does

not imply x = a+ i, we claim that the second assertion may not hold.
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a+b = i, x = b a, y = i 2b

a = i 2, b = 2a = 0, b = i

a+b = i, x = 2a+b, y = b 2i

a := 0;
b := i;

a := i – 2;
b := 2;

x := b – a;
y := i – 2b;

assert (x + y = 0); 
assert (x = a + i);

a+b = i, x = y

x := 2a + b;
y := b – 2i;

True

True False

False
*

*

Input: i

1 2

3

6

4 5

a+b = i

Figure 1.2: Deciding validity of linear equality assertions using abstract interpretation. The
sets of linear equalities shown next to each edge represent the invariants computed by the
abstract interpreter.

Our random interpretation based technique can also decide the validity of the two

assertions at the end of the program in Figure 1.1 like abstract interpretation; but unlike

abstract interpretation it maintains the simplicity and efficiency of random testing. Any

random interpretation based algorithm (called random interpreter) has the following generic

skeleton.

• Choose random values for the input variables.

• Execute both branches of conditionals.

• Combine values of variables at join points.

• Test the assertion.
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A random interpreter essentially executes the program in a non-standard manner. It first

chooses random values for the input variables of the program, just like random testing. It

then starts executing the program. When it reaches a conditional, then instead of evaluating

the conditional and figuring out whether it is true or false, and accordingly taking either

the true branch or the false branch, the random interpreter executes both branches of the

conditional (in parallel), just like an abstract interpreter. When the random interpreter

approaches a join point, then there are two program states, one on either side of the join

point. The random interpreter combines those program states ρ1 and ρ2 by means of an

operation called affine join operation to generate another program state ρ. The affine

join operation is a simple operation that involves taking a random weighted average of

the two states to be combined; this operation is further discussed in Section 2.1.1. The

combined state ρ is a hypothetical state in the sense that it may never arise in any real

execution of the program. However, it has the useful property that it satisfies exactly

those interesting properties (in this case, linear equalities) that are satisfied by both ρ1

and ρ2 with high probability over the choice of the random weight used by the random

interpreter for computing the affine join. Hence, instead of proceeding the execution with

both states ρ1 and ρ2, it suffices to continue the execution with simply the state ρ. (Note

that it is important to proceed the execution from the join point with only one program

state; because otherwise if the random interpreter works with both states ρ1 and ρ2, then

at the next join point there will be 4 program states; and at the next one, there will be

8 states, and so on. This is like testing all execution paths in parallel and there can be

potentially exponential number of paths even in a loop-free program.) Once the random

interpreter is done executing the program in this non-standard manner, then it simply tests

the assertions at a program point with the program state at that point, just like random

testing. In Section 2.1.1, we show in full detail how the random interpreter decides the

validity of the two assertions at the end of the program in Figure 1.1 using the affine join

operation.

Hence, we see that a random interpreter attempts to retain the simplicity and

efficiency of random testing (by simply executing the program, and combining program

states at join points), and soundness of abstract interpretation (by executing both branches

of conditionals). This comes at the cost of probabilistic soundness, meaning that there is a

chance that the random interpreter gives a false judgment. This happens when the random

interpreter makes some bad random choices. However, the good thing is that the number of



CHAPTER 1. INTRODUCTION 8

such bad random choices is small and if the random choices are made from a large set, then

the probability that the random interpreter yields a false judgment can be made arbitrarily

small. It is also important that this probability is not over the space of all programs, but

over the space of random choices.

In the following chapters, we describe formally some program abstractions to which

this approach can be applied and the kind of properties that can be verified and discovered

of those programs. The reader will notice that the key ideas in random interpretation are

simple to describe but the error probability analysis is the most challenging part (as is

typical of probabilistic algorithms).

Organization

This dissertation is organized as follows. We first describe a random interpreta-

tion based program analysis for the abstraction of linear arithmetic in Chapter 2. It can

be used to reason about linear equalities between program variables. Chapter 3 describes

another random interpretation based program analysis for the abstraction of uninterpreted

functions. It can be used to reason about Herbrand equivalences between program sub-

expressions (global value numbering). In Chapter 4, we describe a framework that general-

izes the random interpreters described in Chapter 2 and Chapter 3. We then show how to

extend any random interpreter described using this framework to an inter-procedural setting

to obtain a more precise analysis. This framework should guide the development of random

interpreters for new domains, and provide a large part of their error probability analysis.

Chapter 5 discusses the problem of combining the random interpreters from Chapter 2 and

Chapter 3 to build a more precise program analysis for the combined abstraction of linear

arithmetic and uninterpreted functions.
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In some very real sense, computation is inher-
ently randomized. It can be argued that the
probability that a computer will be destroyed
by a meteorite during any given microsecond
of its operation is at least 2−100.

Christos Papadimitriou, Computational
Complexity.

Chapter 2

Linear Arithmetic

In this chapter, we consider the problem of verifying or discovering linear equal-

ities among program variables at any program point. A linear equality among variables

x1, . . . , xk is a relationship of the form c0 +
k∑

i=1
cixi = 0, where ci’s are some constants.

We consider programs that have been abstracted using linear assignments (i.e., assignments

of the form x := e, where e is a linear arithmetic expression) and linear equality condi-

tionals (i.e., conditionals of the form e = 0). This program abstraction is described more

formally in Section 2.2. We assume that the program variables take rational values. It

turns out that the problem of discovering all linear equalities even in such programs is

undecidable [MOS04a]. We present a polynomial time algorithm that discovers (some) lin-

ear equalities for such programs [GN03]. (This algorithm discovers all linear equalities that

hold when all conditionals in the program are treated as non-deterministic. It also discovers

some linear equalities that require reasoning about predicates in conditionals.)

Applications: Several classical data flow analysis problems can be modeled as the prob-

lem of detecting linear equalities among program variables. Examples are: constant prop-

agation (which involves detecting variables that always have constant values), copy propa-

gation (which involves detecting variables that always have same values), and common sub-

expression elimination. Several loop invariant computations and loop induction variables

can also be identified by detecting linear equalities. Translation validation [PSS98, Nec00]
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also requires checking the equality of variables in two versions of a program before and after

optimization.

2.1 Key Ideas

In this section, we illustrate the two key ideas in our random interpretation based

algorithm for discovering linear equalities among program variables.

The random interpreter performs arithmetic over the field Fp for some randomly

chosen prime p (as opposed to the field of rational numbers) to avoid the problem of dealing

with big numbers. Fp denotes the field of integers {0, . . . , p-1} where arithmetic is done

modulo p. Whenever the random interpreter chooses some random value, it does so inde-

pendently of the previous choices and uniformly at random (u.a.r.) from the field Fp. We

use Rand() to denote such a fresh random value.

2.1.1 Affine Join Operation

The random interpreter executes a program in a non-standard manner. When it

reaches a conditional, it executes both its branches. As a result, when it reaches a join

point, there are two program states ρ1 and ρ2, one on either side of the join point. The

random interpreter combines the two program states ρ1 and ρ2 using an operation called

affine join operation.

A program state is a mapping from program variables that are visible at the

corresponding program point to values, which in this case are elements of Fp. In general

these values are polynomials over Fp. These polynomials may simply be elements of Fp

(as in this chapter), vectors of elements from Fp
1 (Chapter 3), or linear functions of the

program’s input variables (Chapter 4). We first define the affine join operation for combining

two values, and then extend it to combine two program states.

The affine join operation for combining two values v1 and v2 involves computing

the weighted average of v1 and v2 using the weights w and 1−w, where w is chosen randomly

from Fp. We denote this operation by φw.

φw(v1, v2) = wv1 + (1− w)v2

1A vector (v1, . . . , vℓ) can be represented by the polynomial
ℓP

i=1
zivi, where z1, . . . , zℓ are some fresh

variables.
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φw can be treated as some kind of selector between v1 and v2. Note that if w is chosen to

be either 1 or 0, then the affine join operation yields either v1 or v2 respectively.

φ1(v1, v2) = v1 and φ0(v1, v2) = v2

However, the interesting bit lies in plugging a non-boolean value for w, in fact, a random

value for w, which has the effect of producing some (random) combination or superposition

of v1 and v2 rather than simply v1 or v2.

The affine join operation for combining values as described above can be extended

to combine program states ρ1 and ρ2 as follows.

φw(ρ1, ρ2)(x) = φw(ρ1(x), ρ2(x))

The affine join of states ρ1 and ρ2 is another state ρ that assigns to each variable x the

affine join of the values of variable x in the states ρ1 and ρ2. Note that the same random

weight w is used for combining the two values of all variables. For example, let ρ1 and ρ2

be the following states of two variables x and y.

ρ1 : {x→ 2, y → 3} and ρ2 : {x→ 4, y → 1}

The affine join of ρ1 and ρ2 with respect to the random weight, say 3, is the following state

ρ:

ρ = φ3(ρ1, ρ2) : {x→ φ3(2, 4) = −2, y → φ3(3, 1) = 7}

Any state ρ obtained as the affine join of two states ρ1 and ρ2 has two interesting

properties: (a) The state ρ satisfies all linear equalities that are satisfied by both ρ1 and

ρ2. In the above example, note that both ρ1 and ρ2 satisfy the linear equality x + y = 5,

and hence ρ also satisfies it. (b) On the other hand, given a linear equality that is not

satisfied by at least one of ρ1 or ρ2, ρ will also not satisfy that linear equality with very

high probability (over the choice of the random weight w used to compute the affine join).

In the above example, note that y = 2 is a linear equality that is not satisfied by at least

one of ρ1 and ρ2 (in fact, it is not satisfied by both). A simple calculation will show that

the probability that ρ will satisfy that linear equality is same as the probability of choosing

w to be 1
2 . Lemma 1 and Lemma 2 state and prove slightly more general versions of these

two properties. Hence, in some sense, the affine join of states ρ1 and ρ2 filters the common

linear equalities that are satisfied by both the states ρ1 and ρ2.
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x

y

x + y =
5

y = 2
(x = 2, y = 3)

(x = 4, y = 1)

(x = 2, y = 7)

1

2

0

0

Figure 2.1: Geometric interpretation of the affine join operation.

It is worth-pointing out that, unfortunately, the affine join operation does not filter

common non-linear relationships. In our example above, note that both states ρ1 and ρ2

satisfy the invariant x(1 + y) = 8, but ρ does not satisfy this invariant. This fact will not

have any bearing on the algorithm that we describe in this chapter for analyzing a program

for linear equalities. However, as we will notice in Section 3.1, this fact needs to be given

attention to when we try to use similar approach to analyze properties of different kinds of

abstractions of a program.

The affine join operation has a nice geometric interpretation. A program state of

k variables geometrically represents a point in a k-dimensional space. The affine join of two

such points ρ1 and ρ2 corresponds to drawing a line between those points and choosing a

point ρ randomly on that line. Figure 2.1 shows the geometric interpretation of the affine

join operation for the above example. The two interesting properties of the affine join can

also be explained geometrically: (a) Any linear equality that is satisfied by both ρ1 and

ρ2 is represented geometrically by a hyperplane that passes through both ρ1 and ρ2, and

thus also through the line joining ρ1 and ρ2. Since ρ lies on the line joining ρ1 and ρ2, the

hyperplane also passes through the point ρ, and hence ρ also satisfies the corresponding

linear equality that the hyperplane represents. This explains why we choose point ρ on the
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i = 3, a = 1, b = 2i = 3, a = 0, b = 3

i = 3, a = 4, b = 7 
x = 11, y = 11

i = 3, a = 4, b = 7
x = 1, y = 1

a := 0;
b := i;

a := i – 2; 
b := 2;

x := b – a;
y := i – 2b;

assert (x + y = 0); 
assert (x = a + i);

i = 3, a = 4, b = 7

i = 3

i = 3, a = 4, b = 7 
x = 23, y = 23

x := 2a + b;
y := b – 2i;

True

True False

False

w1 = 5

w2 = 2

*

*

Input: i

Figure 2.2: Deciding validity of linear equality assertions using random interpretation. The
values of variables shown next to each edge represent the program states computed in a
random interpretation.

line joining ρ1 and ρ2. (b) Any linear equality e = 0 that is not satisfied by at least one

of the points ρ1 and ρ2 is represented geometrically by a hyperplane that does not pass

through at least one of ρ1 and ρ2, and thus also does not contain the line joining ρ1 and ρ2.

In fact, the hyperplane e = 0 intersects the line joining ρ1 and ρ2 in at most one point, say

ρ0. The probability that ρ satisfies the linear equality e = 0 is same as the probability that

we pick ρ to be ρ0 during the process of choosing a point randomly on the line joining ρ1

and ρ2. The probability of this event is extremely small since there are many points on the

line joining ρ1 and ρ2. This explains why we choose the point ρ randomly. In this chapter,

we occasionally refer to states, when used in a geometric context, as points.

We now show how the random interpreter uses this affine join operation to decide

the validity of the two assertions in the program shown in Figure 2.2. The random inter-
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preter starts with a random value, say 3, for the input variable i and then executes the

assignment statements on both sides of the conditional. In the example, we show the values

of all live variables at each program point. The two program states before the first join point

are combined with the affine join operation using the random weight w1 = 5. Note that

the resulting program state after the first join point can never arise in any real execution

of the program. However, this state captures the invariant a+ b = i, which is necessary to

prove the first assertion in the program. Also, note that the random interpreter does not

compute the invariant a + b = i symbolically (unlike the abstract interpreter described in

Section 1.2); but this invariant is neatly hidden in the number game that is being played

here. The random interpreter then executes both sides of the second conditional and com-

putes the affine join of the two states before the second join point using the random weight

w2 = 2. We can verify easily that the resulting state at the end of the program satisfies

the first assertion but does not satisfy the second. The random interpreter thus claims that

the first assertion is true, and the second assertion may not be true. Notice that in one

(non-standard) run of the program the random interpreter has figured out that one of the

(potentially) exponentially many paths violates the second assertion.

Note that choosing w to be either 0 or 1 at a join point corresponds to executing

either the true branch or the false branch of the corresponding conditional; this is what naive

testing accomplishes. However, by choosing w (randomly) from a set that also contains non-

boolean values, the random interpreter is able to capture the effect of both branches of a

conditional in just one interpretation of the program. In fact, there is nothing particular

about the random interpreter’s specific choice of w1 = 5 and w2 = 2. Whatever values

the random interpreter would have picked for w1 and w2, it would have been able to verify

the first assertion. On the other hand, for almost all values of w1 and w2, the random

interpreter would have been able to conclude that the second assertion is false. There are

a few bad random choices for i, w1 and w2 (namely, i = 2, or w1 = 1, or w2 = 0) and

if the random interpreter would have chosen those values, then it would have incorrectly

validated the second assertion. However, since the random interpreter chooses these values

from Fp, which is a large enough set, the probability of hitting any of those bad random

choices is extremely small, in this case at most 3
p , even if the random interpreter does not

know what those bad random choices are. (Note that even though in this case it turns

out that any non-boolean choice for the weights is good, this may not be true always. In

general, there exists at most one bad random weight at each join point that may mislead
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the random interpreter into validating an incorrect assertion.)

What we have described above is one run of the random interpreter over a program.

There are several advantages in performing multiple such runs of the program, wherein the

random interpreter declares an assertion to be true iff the assertion is true on all those

runs. This reduces the error probability by a factor that is exponential in the number of

runs. Another advantage lies in being able to discover linear equalities rather than simply

verifying them. Note that one run is good enough for verifying a given assertion. However,

if the random interpreter attempts to discover linear equalities by analyzing the values of

the variables in just one run, then it may draw incorrect conclusions. For example, from the

state computed by the random interpreter at the end of the program in Figure 2.2, it may

(incorrectly) appear that a = −4 is an invariant at the end of the program. This problem

can be avoided if the random interpreter performs several such runs of the program and then

looks for common relationships among all those executions. A close analysis of our example

shows that if the random interpreter executes the program once more, the probability of a

evaluating to −4 again is precisely the probability that we choose the random weight w1 to

be 5 again, which is very small. Section 2.1.2 describes another advantage of performing

several runs, wherein they are used to infer linear equalities that require reasoning about

predicates in the conditionals (as opposed to abstracting the conditionals away as non-

deterministic, which is what we have done here).

Multiple runs of the random interpreter over a program yield a collection of, say

t, states at each program point. We refer to this collection of states as a sample. We use

the notation Si to refer to the ith state in sample S. We extend the affine join operation

to combine two samples, in which case we combine each pair of corresponding states using

a separate weight factor. Hence, the affine combination of two samples S and S′ is another

sample denoted by φ[w1,...,wt](S, S′), where:

φ[w1,...,wt](S, S′)i = φwi(Si, S′
i) for 1 ≤ i ≤ t

A sample can be thought of as a representation of the affine subspace defined by

the states in the sample. An affine join of two samples in that sense computes the union

of two subspaces (in a very efficient manner). On the other hand, computing union of

two subspaces when represented by symbolic linear equalities is an involved operation, and

this is what the abstract interpretation based algorithm for discovering linear equalities

does [Kar76].
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We conclude the discussion of the affine join operation with the statement and

proof of the completeness and probabilistic soundness lemmas. We use the notation Eval(e, ρ)

to denote the standard meaning of expression e in state ρ. A more formal definition is given

in Section 2.2.1. We say that a state ρ satisfies an equality e1 = e2, denoted by ρ |= e1 = e2,

iff Eval(e1, ρ) = Eval(e2, ρ). We extend this notion to samples and say a sample S satisfies

an equality e1 = e2 when all of its states satisfy the equality. We denote this by S |= e1 = e2.

The completeness lemma for the affine join operation states that the resulting

sample satisfies all linear equalities that are satisfied by both the original states.

Lemma 1 [Affine Join Completeness Lemma] Let S1 and S2 be two t-state samples

and let g be an expression such that S1 |= g = 0 and S2 |= g = 0. Then, for any choice of

weights w1, . . . , wt, the affine join S = φ[w1,...,wt](S1, S2) is such that S |= g = 0.

Proof. It is easy to verify that for any affine combination of two states φw(ρ1, ρ2), we

have Eval(g, φw(ρ1, ρ2)) = φw(Eval(g, ρ1), Eval(g, ρ2)), since g is a linear expression. Thus

if the value of g is zero in the states ρ1 and ρ2, then the value of g is also zero in their affine

combination. From here the completeness statement follows immediately. 2

The following probabilistic soundness lemma for the affine join operation states

that the probability of choosing the combination weights such that a given false linear

equality (i.e., a linear equality that is not satisfied by at least one of the two original states)

is introduced is extremely small (for a large enough choice of weights). The notation Pr(E)

denotes the probability of event E over the corresponding random choices.

Lemma 2 [Affine Join Soundness Lemma] Let S1 and S2 be two samples and let g be

an expression such that S1 6|= g = 0. More specifically, let ℓ be the number of states in S1

that do not satisfy g = 0. Let w1, . . . , wt be chosen u.a.r. from Fp and independently of each

other and of the expression g. Let S = φ[w1,...,wt](S1, S2). Then, Pr(S |= g = 0) ≤
(

1
p

)ℓ
.

Proof. Without any loss of generality, let S1
1 , . . . , S1

ℓ be the ℓ states in S1 that do not

satisfy g = 0. For any i ∈ {1, . . . , ℓ}, consider the line joining the points S1
i and S2

i . If

Eval(g, S1
i ) = Eval(g, S2

i ), then this line is parallel to the hyperplane g = 0, and hence,

no point on this line satisfies the equation g = 0. In other words, for any choice of wi,

Eval(g, Si) = Eval(g, S1
i ) = Eval(g, S2

i ) 6= 0 and thus the probability that Si |= g = 0 is

zero. If Eval(g, S1
i ) 6= Eval(g, S2

i ), then this line intersects the hyperplane g = 0 in exactly
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one point. In other words, there is only one choice for wi (namely, Eval(g,S2
i )

Eval(g,S2
i )−Eval(g,S1

i ))

such that Eval(g, Si) = 0. Thus, the probability that the weight wi is chosen such that Si

satisfies the equation g = 0 is precisely 1
p . Since w1, . . . , wℓ are all independent, it follows

that the probability that all the states S1, . . . , Sℓ satisfy the equation g = 0 is at most
(

1
p

)ℓ
.

2

2.1.2 Adjust Operation

In the example program in Figure 2.2 conditionals were abstracted away as non-

deterministic branches. In this section, we describe how to infer linear equalities that require

reasoning about predicates in the conditionals.

Consider the following program:

a := x+ y ;

if x = y then b := a else b := 2x ;

assert (b = 2x);

The assert statement at the end of the above program is true but in order to prove it we

must notice that x = y in the true branch of the conditional. The state computed by the

random interpreter before the conditional quite likely will not satisfy the predicate x = y

in the conditional. In that case, if the random interpreter proceeds with the same state on

the true branch of the conditional, then it is not capturing the extra information that is

provided by the conditional on that branch, namely that the predicate x = y is true. We

could try to restart the interpretation with values of the input variables x and y that satisfy

the conditional, but finding such initial values in general is hard. Also, notice that we could

not do something simple like replace the occurrences of x with y in the true branch; this

would not help in this case. We have to somehow adjust all of the previously computed

variables as well, such as a in this example.

To solve this problem, we propose that the random interpreter performs multiple

executions of the program in parallel, thereby computing several states, which we refer to as

a sample, at each program point. We now describe an operation for transforming a sample

in such a way that the new sample satisfies all the linear equalities that are satisfied by the

original sample, and additionally it satisfies the linear equality given by the conditional. We

do this by essentially “projecting” the points in the sample onto the hyperplane represented
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Adjust(S, e) =

1 Pick Sj1 and Sj2 from S such that Eval(e, Sj1) 6= Eval(e, Sj2).

2 Pick w ∈ Fp u.a.r. with the constraint that ρ0 = φw(Sj1 , Sj2) is such that

Eval(e, ρ0) 6= 0 and Eval(e, ρ0) 6= Eval(e, Si) for all i ∈ {1, . . , t}.

3 For i ∈ {1, . . . , t} do

Let S′′
i be the intersection of hyperplane e = 0 with the line passing

through Si and ρ0, i.e., S′′
i = φw(Si, ρ0) for w = Eval(e,ρ0)

Eval(e,ρ0)−Eval(e,Si).

4 For i ∈ {1, . . . , t} − {j1, j2} do

Let S′
i = S′′

i .

5 For i ∈ {j1, j2} do

Pick wi,1, . . . , wi,t ∈ Fp independently and u.a.r. with the constraint

that
t∑

j=1
wi,j = 1.

Let S′
i be such that S′

i(x) =
t∑

j=1
wi,j S′′

j (x) for all variables x.

6 Return [S′
1, . . . , S′

t].

Figure 2.3: The Adjust operation.

by the conditional. Orthogonal projection does not work since it destroys linear equalities

that are satisfied by S. Instead we use the function Adjust(S, e) described in Figure 2.3 to

adjust the sample S according to the conditional e = 0.

There are a couple of details in the definition of the Adjust operation that deserve

discussion. Line 1 presumes the existence of two states Sj1 and Sj2 in which the expression

e has different values. If there are no such states, it means that the expression e has same

value, say c, in all states in the sample. In such a case we need not perform any adjustment.

Instead we declare that the linear equality e = c holds before the conditional and accordingly

we consider only one branch depending on whether the constant c is zero or not. When this

is the case we say that Adjust(S, e) is undefined.

Line 2 in the Adjust function chooses a point ρ0 u.a.r. on the line passing through

Sj1 and Sj2 with the constraint that ρ0 does not lie on the hyperplane e = 0 (i.e., Eval(e, ρ0) 6=

0) and ρ0 is at different distance from the hyperplane e = 0 compared to the distance of

any point Si in the sample S (i.e., Eval(e, ρ0) 6= Eval(e, Si)). Since e has different values
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a := x + y;

b := a; b := 2x;

assert (b = 2x);

x = (2,  2, 4)
y = ( 1, 4, 0)

x = ( 6, 1,  5)
y = ( 9, 5, 3)
a = (15, 6, 2)
b = (12, 2,10)

x = ( 2, 2, 4)
y = ( 1, 4, 0)
a = ( 1, 6, 4)

x = (4, 1, 3)
y = (4, 1, 3)
a = (8, 2, 6)

x = ( 2, 2, 4)
y = ( 1, 4, 0)
a = ( 1, 6, 4)
b = ( 4, 4, 8)

x = ( 2, 2, 4)
y = ( 1, 4, 0)
a = ( 1, 6, 4)

x – y = 0

w1 = 2
w2 = 3
w3 = 1

S 0 = Adjust(S, x – y)

S

True False

x = (4, 1, 3)
y = (4, 1, 3)
a = (8, 2, 6)
b = (8, 2, 6)

Figure 2.4: Use of the Adjust operation to decide validity of linear equality assertions.
The 3 values for variables shown next to each edge represent 3-state samples computed by
the random interpreter. The Adjust operation is used to obtain the sample S′ from S, as
detailed in Figure 2.5.

at Sj1 and Sj2, such a point ρ0 always exists (in fact, there are at least p − (1 + t) choices

for ρ0), and choosing such a point is a linear-time operation. The loop on line 3 involves

computing the intersection of the line that passes through ρ0 and Si with the hyperplane

e = 0 (this is a simple computation). Note that because of the nature of choice of ρ0, the

line passing through ρ0 and Si indeed intersects the hyperplane e = 0.

The loop on line 4 assigns points S′
i = S′′

i (for i 6= j1, j2), while the loop on line 5

assigns points S′
j1

and S′
j2

a random affine combination (i.e., weighted average with sum of

the weights being 1) of all points in the sample S′′. The intuition behind doing this is as

follows. Note that S′′
j1

and S′′
j2

as computed in the loop on line 3 are identical points, and

hence not independent of each other. Independence of these points is crucial for proving the

probabilistic soundness of the algorithm. The affine combination of points in the sample S′′
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x =
y

y

S1

S2

S3

0

x0

S 0
1

S 0
2

S 0
3=S 00

3S 00
2 = S 00

1

Figure 2.5: Geometric interpretation of the Adjust operation. This also shows in detail how
the sample S in Figure 2.4 is adjusted to obtain sample S′.

generates fresh independent points in the subspace that is spanned by points in the sample

S′′.

Note that all states in the sample S′ are obtained as some affine combinations of

the states in the sample S. Hence, they satisfy all linear equalities between variables that

are satisfied by all states in the original sample S. Furthermore, it should be intuitive that

if the states in the sample S are spread in some subspace U , then the states in the adjusted

sample S′ are spread in the intersection of the subspace U with the hyperplane e = 0.

We now illustrate the use of the Adjust operation to verify the assertion in the

program mentioned at the beginning of this section. Figure 2.4 shows the program executed

on the 3-state sample shown at the top of the figure. The Adjust operation is used to obtain

the sample S′ from S as follows. Notice that all states in S satisfy a = x + y (due to the

assignment). Now consider the distribution of the points in S when viewed inside the

hyperplane a = x + y as shown in Figure 2.5. We pick the points S1 and S2 to play the

role of Sj1 and Sj2 from the definition of Adjust (since the expression x − y has different

values on those points). Then we pick another point ρ0 ({x→ 2, y → 6}) u.a.r. on the line

determined by S1 and S2 (which incidentally is parallel to the y-axis) with the constraint

that ρ0 is not in the hyperplane x − y = 0, and that the lines passing through ρ0 and any
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point in S are not parallel to the hyperplane x− y = 0. Then we obtain the points S′′
i (for

i = 1, 2, 3) as the intersections of the lines that pass through ρ0 and Si with the hyperplane

x− y = 0. Notice that two of the points S′′
1 and S′′

2 coincide. We assign S′
3 = S′′

3 while we

obtain S′
1 and S′

2 by generating two fresh points by taking affine combinations of the points

in the sample S′′.

Notice that the sample before the equality conditional is adjusted only in its true

branch. For the false branch, the random interpreter uses the same sample before the

conditional since there is no linear equality that can be inferred from a disequality. Notice

that after adjustment the sample satisfies both the original relationships (a = x + y) and

also the new one due to the conditional (x = y). Finally, the affine join operation is done at

the join point using the random weights 2, 3, and −1 and the resulting sample now clearly

reflects the desired assertion b = 2x (precisely because both sides of the join reflect the

same assertion).

To complete the discussion of the Adjust operation, we state and prove below the

completeness and soundness lemmas. The completeness lemma states that the adjusted

sample satisfies all the linear equalities satisfied by the original sample and additionally

also satisfies the linear equality for which the original sample was adjusted.

Lemma 3 [Adjust Completeness Lemma] Let e be any expression and S be any sample

such that S′ = Adjust(S, e) is defined. Then, S′ |= e = 0. Furthermore, for any expression

g, if S |= g = 0 then S′ |= g = 0.

Proof. By definition of the sample S′, we have that each state S′
i from S′ satisfies e = 0.

Let ρ0 be the intermediate state obtained as an affine combination of Sj1 and Sj2 (in line

2 of the Adjust function). Clearly ρ0 satisfies all linear equalities that both Sj1 and Sj2

satisfy, hence also g = 0. Now each S′
i from S′ is an affine combination of Si and ρ0 and

therefore it also satisfies g = 0. 2

The following soundness lemma implies that the adjusted sample satisfies exactly

one more linearly independent linear equality than the original sample.

Lemma 4 [Adjust Soundness Lemma] Let e be any expression and S be any sample

such that S′ = Adjust(S, e) is defined. Let S′′ be the sample computed by the Adjust

operation immediately after the loop in line 3. Let ρ0 be the intermediate state computed in

line 2 of the Adjust function. For any expression g, there exists a constant c such that if
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any ℓ states in S′′ satisfy the linear equality g = 0, then the corresponding ℓ states in the

sample S, as well as the state ρ0, satisfy the linear equality g + ce = 0.

Proof. Let c be −Eval(g,ρ0)
Eval(e,ρ0) . Note that ρ0 satisfies g + ce = 0. Without any loss of

generality, let S′′
1 , . . . , S′′

ℓ be the ℓ states in sample S′′ that satisfy g = 0. Consider any

i ∈ {1, . . . , ℓ}. Note that S′′
i satisfies g + ce = 0 since S′′

i satisfies both g = 0 and e = 0.

Since S′′
i = φwi(Si, ρ0) (for wi = Eval(e,ρ0)

Eval(e,ρ0)−Eval(e,Si)), it can be easily verified that Si also

satisfies g + ce = 0. 2

The geometric intuition behind the soundness lemma is that if some subset of the

adjusted points in the sample S′′ (computed in the loop in line 3) lie in some hyperplane

g = 0, then the corresponding subset of the original points lie in the hyperplane that

contains the point ρ0 and passes through the intersection of the hyperplanes g = 0 and

e = 0. The soundness lemma implies that any equation g = 0 that is satisfied by the

adjusted sample can be expressed as a linear combination of the linear equality e = 0 and

some linear equality g′ = 0 that is satisfied by the original sample. Note that the soundness

lemma indicates such a g′ (namely, g + ce).

2.2 The Random Interpreter

We first formally describe our program model and some notation related to it.

Program Model

We assume that each procedure in a program is abstracted using the flowchart

nodes shown in Figure 2.6. In the assignment node, x refers to a program variable while e

denotes a linear arithmetic expression:

e ::= x | c | e1 + e2 | e1 − e2 | c× e

Here c denotes some arithmetic constant. We express the computational complexity of al-

gorithms in terms of the number of assignment nodes and for that purpose, we assume that

the expression e in an assignment node is of constant size. A non-deterministic assignment

x :=? denotes that the variable x can be assigned any value. Such non-deterministic as-

signments are used as a safe abstraction of statements (in the original source program) that

our abstraction cannot handle precisely.
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(e) Join Node(a) Assignment Node

(b) Non-deterministic 
Assignment Node

(c) Conditional Node 

(d) Non-deterministic 
Conditional Node 

x := e;

S

U 0, T 0, b0

U, T, b

S 0

*True False

S U, T, b

S 1 U 1, T 1, b1 S 2 U 2, T 2, b2

e = 0
True False

S U, T, b

S 1 U 1, T 1, b1 S 2 U 2, T 2, b2

S 1 U 1, T 1, b1 S 2 U 2, T 2, b2

S U, T, b

x := ?

S 0

S U, T, b

U 0, T 0, b0

Figure 2.6: Flowchart nodes considered in the linear arithmetic analysis.

Conditional nodes have a predicate of the form e = 0, where e is a linear arithmetic

expression. Non-deterministic conditionals, represented by ∗, denote that the control can

flow to either branch irrespective of the program state before the conditional. They are used

as a safe abstraction of conditional guards that our abstraction cannot handle precisely.

A join node has two incoming edges. Note that a join node with more than two

incoming edges can be reduced to several join nodes each with two incoming edges.

Note that this is an intra-procedural analysis. The procedure calls have to be

abstracted using non-deterministic assignments.

Notation

We use the following notation related to the above program model.

• na : Number of (deterministic and non-deterministic) assignment nodes.

• nc: Number of (deterministic and non-deterministic) conditional nodes. Also, number

of join nodes.

• n : Number of nodes. Note that n = na + 2nc.

• nap: Maximum number of assignment nodes in any procedure.
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• ncp: Maximum number of conditional nodes in any procedure.

• kv : Maximum number of program variables visible at any program point.

• ku : Maximum number of program variables visible at any point in a program loop

(maximal strongly connected component) and also updated inside that loop.

A standard optimization for several algorithms that we describe in this dissertation

involves converting the program into SSA form [CFR+90]. With regard to that, we use the

following notation:

• ns : Number of total assignment statements (both phi assignments and non-phi as-

signments) in SSA version of the program.

It has been reported [CFR+90] that the ratio of the number of new phi-assignments intro-

duced (as a result of SSA conversion) to the number of original assignments typically varies

between 0.3 to 2.8 (i.e., 1.3na ≤ ns ≤ 3.8na) irrespective of program size.

For describing a bound on the number of steps required for fixed-point computa-

tion, we use the following notation:

• β : Maximum number of back-edges in any program loop

For a structured flow-graph, β denotes the maximum loop nesting depth. Based on the

experiments that we carried out, we noticed β to be a small constant in practice, usually

bounded above by 3.

2.2.1 Basic Algorithm

The random interpreter computes a sample at each program point. The number

of states in each sample can be chosen to be t = 3kv/2 + 3. Each state in a sample maps

program variables (which are visible at the corresponding program point) to values from

the field Fp. The prime p modulo which the random interpreter performs arithmetic is

chosen randomly from a large enough set of primes. Experiments suggest that a randomly

chosen 32 bit prime number is good enough. However, our conservative theoretical analysis

implies that in the worst case, we need to work with larger prime numbers. For a detailed

discussion, see Section 2.2.2.

For notational convenience, we extend the definition of a state to also include an

undefined state, denoted by ⊥. We say that ⊥ |= e = 0 for any expression e. Similarly, we
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also extend the definition of a sample to include an undefined sample, also denoted by ⊥,

that consists of all ⊥ states.

The random interpreter computes the samples at different program points by per-

forming a forward analysis on each procedure in the program. In presence of loops, the

random interpreter goes around loops until a fixed point is reached. This issue is further

discussed in Section 2.2.3. We now describe the action of the random interpreter on the

flowchart nodes shown in Figure 2.6.

Initialization: At procedure entry, the random interpreter starts with an initial sample

S0 all of whose states are initialized to random values for all variables.

S0
i (x) = Rand() for 1 ≤ i ≤ t and all variables x

The random interpreter initializes the samples at all other program points to ⊥.

Assignment Node: See Figure 2.6 (a).

If the sample S′ before the assignment node is undefined, then the sample S after the

assignment node is also undefined.

S = ⊥, if S′ = ⊥.

Else, the random interpreter behaves almost like a concrete interpreter. For the assignment

x := e, it transforms each state S′
i in the sample S′ by setting x to the value of e in that

state, which is denoted by Eval(e, S′
i).

Si = S′
i[x← Eval(e, S′

i)]

The random interpreter evaluates an expression e in a state ρ using the usual interpretation

of the arithmetic operations, but over field Fp.

Eval(c, ρ) = c mod p

Eval(x, ρ) = ρ(x)

Eval(e1 ± e2, ρ) = (Eval(e1, ρ)± Eval(e2, ρ)) mod p

Eval(c× e, ρ) = (c× Eval(e, ρ)) mod p
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Non-deterministic Assignment Node: See Figure 2.6 (b).

If the sample S′ before the non-deterministic assignment node is undefined, then the sample

S after the non-deterministic assignment node is also undefined.

S = ⊥, if S′ = ⊥.

Else, the random interpreter processes the assignment x :=? by transforming each state S′
i

in the sample S′ by setting x to some fresh random value.

Si = S′
i[x← Rand()]

Conditional Node: See Figure 2.6 (c).

If the sample S before the conditional node is undefined, then the samples S1 and S2 on

the two branches of the conditional node are also undefined.

S1 = ⊥ and S2 = ⊥, if S = ⊥

Else, if the random interpreter concludes that the conditional e = 0 is always true

(or always false), then it executes only the true (or false) branch of the conditional.

S1 = S and S2 = ⊥, if S |= e = 0

S1 = ⊥ and S2 = S, if S |= e− c = 0 for some non-zero constant c

Otherwise, the random interpreter executes both branches of the conditional e = 0.

S1 = Adjust(S, e) and S2 = S

Non-deterministic Conditional Node: See Figure 2.6 (d).

The random interpreter executes both branches of the non-deterministic conditional node

and simply copies the sample before the conditional on its two branches.

S1 = S and S2 = S

Join Node: See Figure 2.6 (e).

If any one of the samples before the join node is undefined, the random interpreter assigns

the other sample before the join node to the sample after the join node.

S =

{
S1 if S2 = ⊥

S2 if S1 = ⊥
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Otherwise the random interpreter chooses t weights independently and u.a.r. from Fp and

performs the affine join of the two samples before the join node with respect to those

randomly chosen weights.

S = φ[w1,...,wt](S1, S2), where wi = Rand()

Verifying and Discovering Linear Equalities

After fixed-point computation, the resulting samples can be used to verify whether

a given linear equality holds at a given program point or not. Consider any program

point π. Let S be the sample computed by the random interpreter at π after fixed-point

computation. If S = ⊥, then the random interpreter declares the program point π to be

unreachable. Else, the random interpreter verifies a linear equality e1 = e2 at program

point π if Eval(e1, Si) = Eval(e2, Si) for all states Si in the sample S.

For discovering linear equalities at program point π, the random interpreter ex-

tracts relationships from the sample S. This is done by assuming a relationship of the form

α +
∑

j
αjxj = 0 among the variables xj ’s that are visible at π, and then solving for the

unknowns α and αj ’s from the following set of simultaneous linear equations:

α+
∑

j

αjSi(xj) = 0 1 ≤ i ≤ t

The above system of equations may have a parametrized solution (instead of a unique

solution). From the parametrized solution, we may obtain a linearly independent set of

solutions by repeatedly plugging 1 for one of the parameters and 0 for the rest. A more useful

set of linear equalities may be those that involve few variables (as opposed to potentially all

visible variables), e.g., variable equalities, constant variables, or induction variables. These

may be discovered by assuming more specific templates like x = α or x = α1y + α2, and

solving for the unknowns α’s as above.

Note that the coefficients of the linear equalities thus discovered are expressed

modulo p (since the random interpreter performs arithmetic modulo p to avoid the prob-

lem of dealing with large numbers). The challenge now is to obtain the original rational

coefficients, assuming that these rational coefficients involve integers with small absolute

value. In other words, given z ∈ Fp, we want to obtain small integers m1 and m2 such that
m1
m2

= z mod p, i.e., m1 = m2z mod p. Note that if both m1 and m2 have absolute value

less than
√

p
2 , then m1 and m2 are unique.
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Rationalize(z,p)

u1 = (z, 1);

u2 = (p, 0);

do

if (‖u1‖ > ‖u2‖) then swap u1 and u2;

a :=
⌊

〈u1,u2〉
‖u1‖2

⌉
;

u2 := u2 − au1;

while (‖u1‖ > ‖u2‖);

return u1;

Figure 2.7: A procedure to obtain small rational coefficients from their images in Fp. Here
〈u1, u2〉 denotes the inner product of vectors u1 and u2, i.e., if u1 = (a1, b1) and u2 = (a2, b2),
then 〈u1, u2〉 = a1a2 + b1b2. ‖u‖ denotes the Euclidean norm

√
〈u, u〉, and ⌊f⌉ denotes the

integer closest to f .

Given z ∈ Fp, the problem of finding smallest m1 and m2 such that m1
m2

= z mod p

is equivalent to the problem of finding the shortest (in terms of the Euclidean norm) non-

zero vector in the set A = {(m1,m2) ‖ m1 − m2z = 0 mod p}. The latter problem can

be solved by using lattice reduction techniques [Car02]. Since the set A is 2-dimensional

in this case, we can simply use Gaussian reduction algorithm [Gau86], which is similar to

the Euclidean algorithm for computing the greatest common divisor of two numbers. The

procedure Rationalize shown in Figure 2.7 implements this algorithm and returns the pair

m1 and m2, given z and p.

The correctness of the procedure Rationalize follows from the invariant that

both vectors u1 and u2 belong to the set A and their norm decreases in each iteration

of the while loop. The while loop terminates with u1 being the shortest vector in set A

and u2 being the next shortest vector. We now sketch a proof that the while loop in the

procedure Rationalize terminates in at most ⌈log 2p⌉ iterations. The value of ‖u2‖ in the

first iteration is p. Its value in the last iteration is at least
√

p
2 , which is a lower bound for

the length of the second shortest vector in the set A. (This is because there can be at most

one pair of m1 and m2 such that m1
m2

= z mod p and |m1|, |m2| <
√

p
2 . Hence, it must be

the case that at least one element of either the shortest vector or the second shortest vector

must have absolute value at least
√

p
2 . This implies that the length of the second shortest
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vector is bounded below by
√

p
2 .) It can be proved that ‖u2‖ decreases by a factor of at

least
√

2 in each iteration. Hence, the loop terminates in at most ⌈log√
2

(
p√p

2

)
⌉ iterations.

However, experiments show that on the average 6 iterations are needed for a 32-bit prime.

We now describe some heuristics (as an alternative to implementing the procedure

Rationalize) to discover the original rational coefficients from their images in Fp. We can

compute and store the following mapping Ip (indexed by its image) for a randomly chosen

prime p and some small integer constant c beforehand.

Ip

(
m1

m2

)
= m1 ×m−1

2 mod p − c ≤ m1 ≤ c, 1 ≤ m2 ≤ c

Hence, given z, we can lookup the store to immediately output m1 and m2 such that m1
m2

=

z mod p. This approach works if the absolute values of the numerator and denominator are

at most c.

Another alternative is to assume that the denominators of the coefficients of the

linear equalities are 1, or in fact any known constant m. In this case, given z and m, we

can estimate m1 such that z = m1
m mod p as follows:

m1 =

{
m′

1 if m′
1 <

p
2

m′
1 − p otherwise

m′
1 = (z ×m) mod p

In either of the above solutions (for obtaining rational numbers from their images

in Fp), we need to verify the linear equalities thus discovered. This is because we do not

know beforehand whether the assumption on the numerators and denominators (of the

rational coefficients in the linear equalities) being small hold or not. Hence, we need to run

the random interpreter again with a new randomly chosen prime p′ and verify the linear

equalities discovered in the first round.

Optimization

Maintaining a sample explicitly at each program point is expensive (in terms of

time and space complexity) and redundant. For example, consider the samples before and

after an assignment node x := e. They differ (at most) only in the values of variable x.

An efficient way to represent samples at each program point is to convert the

program into minimal SSA form [CFR+90] and then maintain one global sample for the
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program instead of maintaining a sample at each program point. The values of a variable

x in the sample at program point π are represented by the values of the variable xπ in the

global sample, where xπ denotes the renamed version of variable x at program point π after

the SSA conversion. To account for the fact that the Adjust operation updates the sample

on the true side of a conditional, when converting a program into SSA form, we assume that

the true branch of a conditional node updates the values of all original program variables

that were visible immediately before the conditional node. Under such a representation

of one global program sample, interpreting an assignment node simply involves updating

the values of the modified variable in the global sample. Interpreting a join node involves

updating the values of φ variables at that join point in the global sample.

2.2.2 Error Probability Analysis

In this section, we estimate the probability that the random interpreter gives a false

judgment, i.e., it verifies or discovers an incorrect linear equality. Theorem 2, Theorem 3,

and Theorem 4 in this section together state the total error probability of the random

interpreter. The analysis is complicated because of the Adjust operations performed by

the random interpreter (to reason about equality predicates in conditionals). A simpler

analysis is possible when the random interpreter does not perform any Adjust operation,

which means that all conditionals are treated as non-deterministic. A busy reader may skip

this section and refer to the section on page 42 for the idea behind this simpler proof.

For the purpose of the random interpreter’s analysis, we introduce an abstract

interpreter that computes, at each program point, a sound approximation of the set of

linear equalities that hold at that program point. The abstract interpreter represents the

set of linear equalities U at each program point by a set of states T that span the subspace

defined by the linear equalities U . We also estimate the maximum number of bits b required

to represent the numerator and denominator of the values of variables in the states in T .

We write U ⇒ e1 = e2 to denote that the conjunction of linear equalities in U

imply e1 = e2. We use the notation U ⇒p e1 = e2 to denote that the conjunction of linear

equalities in U imply e1 = e2 over the prime field Fp. We write U1 ∩ U2 for the set of

linear equalities that are implied by both U1 and U2. (This operation is sometimes called

the union of affine spaces [Kar76]). Finally, we write U [e/x] for the linear equalities that

are obtained from those in U by substituting e for x. For notational convenience, we let
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⊥ represent an inconsistent set of linear equalities. We also say that ⊥ ⇒ e1 = e2 and

⊥ ⇒p e1 = e2 for any linear equality e1 = e2. Let s be a bound on the size of all expressions

e that occur in the assignment node x := e or conditional node e = 0 in terms of the number

of additions. Let cm be a bound on the absolute value of the coefficients that occur in these

expressions. With these definitions we now define the action of the abstract interpreter over

the flowchart nodes shown in Figure 2.6.

Initialization: The abstract interpreter initializes U = ⊥, T = {} and b = −1 at all

points other than the procedure entry. At procedure entry, the abstract interpreter starts

with the following initial configuration. Let τx denote the state that maps input variable

x to 1 and all other input variables to 0. Let τall denote the state that maps all input

variables to 1.

U = ∅

T = {τx ‖ x is an input variable } ∪ {τall}

b = 1

Assignment Node: See Figure 2.6 (a).

If U ′ = ⊥, then U = ⊥, T = ∅, and b = −1. Else,

U = {x = e[x′/x]} ∪ U ′[x′/x], where x′ is a fresh variable

T = {τ [Eval(e, τ)/x] ‖ τ ∈ T ′}

b = log s+ s(log cm + b′)

Non-deterministic Assignment Node: See Figure 2.6 (b).

If U ′ = ⊥, then U = ⊥, T = ∅, and b = −1. Else,

U = U ′[x′/x], where x′ is a fresh variable

T = T ′ − {τ} ∪ {τ [0/x], τ [1/x]}, where τ is any state from T ′

b = b′

The fact that T spans the subspace defined by U (assuming that T ′ spans the subspace

defined by U ′) follows from the following observation. Let e be any expression that in-

volves x with non-zero coefficient. Then, for any state τ , at least one of Eval(e, τ [0/x]) or

Eval(e, τ [1/x]) is non-zero.
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Conditional Node: See Figure 2.6 (c).

If U ⇒ e = 0, then U1 = U , T 1 = T , b1 = b, U2 = ⊥, T 2 = ∅, and b2 = −1. Else, if

U ⇒ e − c = 0 for some non-zero constant c, then U1 = ⊥, T 1 = ∅, b1 = −1, U2 = U ,

T 2 = T , and b2 = b. Else,

U1 = U ∪ {e = 0}

T 1 = Adjust2(T, e)

b1 = 3 log s+ 3s log cm + b(3s+ 1) + 2

U2 = U

T 2 = T

b2 = b

The Adjust2 function involves generating new points τ by selecting any two points τ1 and

τ2 from T that are not equidistant from the hyperplane e = 0 and drawing a line between

them to intersect e = 0 at τ .

Adjust2(T, e) = {φw(τ1, τ2) ‖ τ1, τ2 ∈ T, Eval(e, τ1) 6= Eval(e, τ2)}

where w ≡
Eval(e, τ2)

Eval(e, τ2)− Eval(e, τ1)

The fact that T 1 spans the subspace defined by U1 (assuming that T spans the

subspace defined by U) follows from the following observation. If all states in Adjust2(e, T )

satisfy g = 0, then all states in T satisfy g + αe = 0 for some constant α. (In fact,

α = −Eval(g,τ)
Eval(e,τ) where τ is some state from T .) Also, if all states in T satisfy g = 0, then all

states in Adjust2(e, T ) satisfy g = 0 since all states in Adjust2(e, T ) are affine combinations

of the states in T .

Non-deterministic Conditional Node: See Figure 2.6 (d).

U1 = U2 = U , T 1 = T 2 = T , and b1 = b2 = b.

Join Node: See Figure 2.6 (e).

If U1 = ⊥, then U = U2, T = T 2, and b = b2. Else if U2 = ⊥, then U = U1, T = T 1, and
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b = b1. Else,

U = U1 ∩ U2

T = T 1 ∪ T 2

b = max(b1, b2)

The abstract interpreter defined above is less efficient than the random interpreter

(otherwise, there would be no need for the random interpreter). We use this abstract

interpreter only to state and prove the soundness and completeness results of the random

interpreter.

Given a program, the sets of linear equalities U computed by the abstract inter-

preter at every point in the program (after fixed-point computation) are uniquely defined.

Corresponding to each such U , there is a random sample S (which depends on the random

choices made by the random interpreter). We now prove that any sample S satisfies exactly

the linear equalities that are implied by the corresponding U with high probability over the

random choices made by the random interpreter.

The following theorem states that any sample S computed by the random inter-

preter satisfies all the linear equalities that are implied by the corresponding set of linear

equalities U computed by the abstract interpreter. Note that this statement does not involve

any error probability.

Theorem 1 [Completeness Theorem] Let S be a sample computed by the random in-

terpreter at some program point. Let U be the corresponding set of linear equalities computed

by the abstract interpreter at that program point. Let g = 0 be a linear equality such that

U ⇒ g = 0. Then, S |= g = 0.

The proof of Theorem 1 is by induction on the number of samples computed by the random

interpreter, and is based on Lemma 1 and Lemma 3. The proof of Theorem 1 is given in

Appendix A.1.

We now show that there is a very small probability that any sample S computed by

the random interpreter satisfies any linear equality that is not implied by the corresponding

set of linear equalities U computed by the abstract interpreter. We estimate this error

probability of the random interpreter in two steps. First, we estimate the error probability

of the random interpreter assuming that the linear equalities are to be discovered over the
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prime field Fp (Theorem 2). Then, we estimate the additional error probability that results

from performing the computations over the prime field Fp instead of the infinite field of

rationals (Theorem 3 and Theorem 4).

Step 1:

We first introduce a useful definition.

Definition 1 [Sound Sample] Let S be a sample computed by the random interpreter

at some program point. Let U be the corresponding set of linear equalities computed by

the abstract interpreter at that program point. We say that sample S is sound if for all

linear equalities g = 0 such that U 6⇒p g = 0, we have that S 6|= g = 0.

Let AS denote the event that all samples computed by the random interpreter

before computing sample S are sound. The notation Pr(E1 ‖ E2) denotes the probability of

event E1 (over the corresponding random choices) given the occurrence of event E2.

Lemma 5 [Soundness Lemma] Let S be a sample computed by the random interpreter

at some program point π. Let q be the maximum number of adjust and join operations

performed by the random interpreter on any path (leading to π from procedure entry) before

computing sample S. Let U be the corresponding set of linear equalities computed by the

abstract interpreter at that program point. Let g = 0 be a linear equality such that U 6⇒

g = 0. Let S̃ be some subset of ℓ states from the sample S. If t ≥ 3kv/2 + 3 and p ≥

(q + 2)(2(q + 1)2 + t+ 2), then Pr(S̃ |= g = 0 ‖ AS) ≤
(

q+1
p

)ℓ
.

The proof of Lemma 5 is by induction on the number of samples computed by the

random interpreter, and is based on Lemma 2 and Lemma 4. The proof of Lemma 5 is

given in Appendix A.2.

There are two things worth mentioning about the statement of the soundness

theorem. Note that the soundness theorem implies a bound on Pr(S |= g = 0 ‖ AS).

However, in order for the inductive proof to work, the soundness theorem actually states a

bound for Pr(S̃ |= g = 0 ‖ AS), where S̃ is any subset of S. Also, note that the soundness

theorem provides a bound for Pr(S |= g = 0 ‖ AS) rather than Pr(S |= g = 0). Again, this is

needed for the inductive proof to work. As we will see later, a bound on Pr(S |= g = 0 ‖ AS)

is sufficient to bound the total error probability of the random interpreter.
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According to Lemma 5, given any relationship not verified by the abstract inter-

preter, the probability (over the random choices made by the random interpreter) that the

relationship is verified by the random interpreter is extremely small (assuming that some

samples computed by the random interpreter are sound, which will be the case with very

high probability).

It follows from the discussion after Theorem 5 in the next section that the random

interpreter goes around each loop at most (ku + 1)β times for fixed-point computation. We

use this observation along with Lemma 5 to prove Theorem 2, which establishes an upper

bound on the probability that the random interpreter is unsound.

Theorem 2 [Probabilistic Soundness Theorem] Let q = 2ncp(ku + 1)β and q′ =

n(ku+1)β. The probability that all random samples computed by the random interpreter sat-

isfy only those linear equalities that are implied by the corresponding set of linear equalities

computed by the abstract interpreter (over the prime field Fp) is at least 1− q′
(

1
p−1

)2t/3−kv
,

if t ≥ 3kv/2 + 3 and p ≥ (q + 2)(2(q + 1)2 + t+ 2).

Proof. Let S1, . . . , Sm be the different samples computed by the random interpreter in

that order. Let U1, . . . , Um be the corresponding sets of linear equalities computed by the

abstract interpreter. Let Ci be the event that sample Si is not sound, i.e., there exists some

linear equality g = 0 such that Si |= g = 0 and U i 6⇒ g = 0.

Pr(C1 ∨ . . . ∨ Cm) =
m∑

i=1

Pr(Ci ∧
i−1∧

j=1

¬Cj)

=
m∑

i=1

Pr(Ci ∧ ASi)

≤
m∑

i=1

Pr(Ci ‖ ASi)

≤
m∑

i=1

∑

g, s.t. U i 6⇒g=0

Pr(Si |= g = 0 ‖ ASi)

≤
m∑

i=1

∑

g, s.t. U i 6⇒g=0

(
q + 1
p

)t
(follows from Lemma 5)

Note that there are pkv+1−p
p−1 different linear equalities with coefficients from Fp

between kv variables and hence this is an upper bound on the number of linear equalities

not implied by U . Also, note that the random interpreter goes around each loop at most
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(ku + 1)β times (follows from the discussion after Theorem 5). Hence, m ≤ n(ku + 1)β = q′.

Thus,

Pr(C1 ∨ . . . ∨ Cm) ≤ q′ ×
pkv+1 − p
p− 1

×
(
q + 1
p

)t

≤ q′ ×
(

1
p− 1

)2t/3−kv

2

Step 2:

In this section, we estimate the additional error probability that results from re-

ducing the problem of finding linear equalities in a program with variables that take rational

values to one in which the program variables take values in some random prime field Fp. We

also estimate the error probability in the process (described in Section 2.2.1) of inferring the

rational coefficients of the linear equalities from their values in the prime field. This error

probability is a function of the size of the set from which the prime is chosen randomly;

hence, it suggests how big the size of this set should be in order to obtain a specific upper

bound on the error probability.

Performing computations over a prime field preserves all true linear equalities, but

may introduce some spurious linear equalities. For example, consider the following program

fragment, where c is some prime number.

if (*) then x := 1 else x := c+ 1;

assert (x = 1);

The assertion at the end of the program is false, but if the arithmetic is performed over the

prime field Fp for p = c, then the assertion becomes true. However, note that the probability

of choosing the prime number p to be c is small since the prime number p is chosen from a

large enough set of primes. It follows from Theorem 3 (stated and proved below) that, in

general, the probability of such spurious linear equalities being introduced is small.

The process of discovering the true coefficients of linear equalities from the coef-

ficients expressed in the prime field can also introduce some error. For example, consider

the following program fragment:

x := c;
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The linear equality x = c holds at the end of the above program fragment. Suppose

p ≤ c ≤ 3p/2. Let c′ = c mod p. Then, the technique suggested in Section 2.2.1 will yield

the incorrect linear equality x = c′, if c′ mod p′ = c mod p′, where p′ is the second randomly

chosen prime for performing random interpretation over the prime field F′
p to verify the

equalities discovered during the first round. However, it follows from Property 1 (stated

below) that the probability of choosing the prime number p′ to be such that c′ mod p′ =

c mod p′ is small since the prime number p′ is chosen from a large enough set of primes.

It follows from Theorem 4 (stated and proved below) that in general the probability of

discovering such incorrect coefficients in linear equalities is small.

Before stating and proving the theorems that bound the desired error probabilities,

we first state a useful property.

Property 1 The probability that two distinct b bit integers are equal modulo a randomly

chosen prime from [1, pm] is at most 1
u for pm ≥ 2ub log (ub).

The proof of Property 1 follows from the prime number theorem which states that the

number of prime numbers less than x is at least x
log x .

Refer to the description of the abstract interpreter in the earlier part of this section.

Observe that there are at most nap(ku+1) evaluations of an assignment node, and ncp(ku+1)

evaluations of a conditional node for any procedure. Hence, the number of bits bm required

to represent the numerator and denominator in any state in T computed by the abstract

interpreter can be bounded as follows:

bm ≤ (3 log s+ 3s log cm + 2)(3s + 2)ncp(ku+1)(s+ 1)nap(ku+1)

We now state and prove the theorems that bound the desired error probabilities.

Theorem 3 The probability that performing arithmetic over the prime field Fp when p is

chosen randomly from [1, pm], introduces any spurious linear equalities is bounded above by
n
2a , if pm = 2a+1b′m log (2ab′m), where b′m = (bm + 1)(kv + 1)2.

Proof. For any program point π, let Eπ be the event that the number of (linearly inde-

pendent) linear equalities computed at π (after fixed-point computation) remains the same

if the computations are performed over some (randomly chosen) prime field Fp. Let T π be

the set of states computed by the abstract interpreter (after fixed-point computation) at

program point π. Let k be the number of linearly independent linear equalities implied by
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T π. Let k′ = kv + 1− k. There exists a matrix of size k′× k′ with non-zero determinant Dπ

whose columns correspond to some k′ states from T π and rows correspond to the values of

some k′ variables in those states. Note that Pr(Eπ) = Pr(Dπ 6= 0 mod p). The number of

bits in the numerator and denominator of Dπ is bounded above by b′m = (bm + 1)(kv + 1)2.

Hence, it follows from Property 1 that Pr(Eπ) ≤ 1
2a , if we choose the prime number p ran-

domly from [1, pm], where pm = 2a+1b′m log (2ab′m). The desired result now follows from the

union bound over the probabilities of the events Eπ for all n program points π. 2

Theorem 4 Suppose the prime p′ used for verifying the linear equalities discovered in the

first round is chosen randomly from [1, pm]. Let c′m be the bound on the absolute value of

the coefficients of the linear equalities discovered in the first round. Then, the probability of

incorrect verification of the coefficients is bounded above by nkv
2a , if pm = 2a+1b′m log (2ab′m),

where b′m = (bm + c′m)(kv + 1) + log (kv + 1).

Proof. For any program point π and any linear equality e = 0 that does not hold at π, let

Fπ,e be the event that e = 0 does not hold at π if the computations are performed over some

(randomly chosen) prime field Fp′ . Let T π be the set of states computed by the abstract

interpreter (after fixed-point computation) at program point π. There must be some state

τ in T π such that Eval(e, τ) 6= 0. Note that Pr(Fπ,e) = Pr(Eval(e, τ) 6= 0 mod p′). The

number of bits in the numerator and denominator of Eval(e, τ) is bounded above by b′m =

(bm + c′m)(kv + 1) + log (kv + 1). Hence, it follows from Property 1 that Pr(Fπ,e) ≤ 1
2a , if

we choose the prime number p′ randomly from [1, pm], where pm = 2a+1b′m log (2ab′m). The

desired result now follows from the union bound over the probabilities of the events Fπ,e

for all n program points π and at most kv linearly independent linear equalities e = 0 at

those points. 2

Theorem 3 and Theorem 4 suggest that the random interpreter must perform

arithmetic with primes that requireO(napku) bits for representation (assuming ncp = O(nap)

and s and cm to be constants). However, we feel that this is a conservative analysis, and we

do not know of any program that illustrates this worst-case behavior. Experiments show

that 32-bit primes are good enough.
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2.2.3 Fixed-point Computation

In presence of loops (maximal strongly connected components) in procedures, the

random interpreter goes around loops (just like any abstract interpreter or a data-flow

analyzer) until a fixed point is reached. We say that the random interpreter reaches a fixed

point across a loop when the sets of linear equalities (computed by the abstract interpreter

introduced in the previous section) corresponding to the samples computed by the random

interpreter reach a fixed point. Note that the samples computed by the random interpreter

themselves do not reach a fixed point, but the linear equalities represented by them do.

The elements of the abstract lattice over which the abstract interpreter performs

computations are sets of linear equalities between program variables. These elements are

ordered by the implication relationship (i.e., if U2 is above U1 in the abstract lattice, then

U1 ⇒ U2). The following theorem provides a bound on the number of steps required to

reach a fixed point across a loop.

Theorem 5 [Fixed Point Theorem] Let U1, . . . , Um be the sets of linear equalities that

are computed by the abstract interpreter at some point π inside a loop in successive iterations

of that loop such that U i 6≡ U i+1. Then, m ≤ ku + 1, where ku is the number of variables

that are visible at π as well as updated inside that loop.

Proof. Let V be the set of variables that are visible at π as well as updated inside the

loop. For all 1 ≤ i ≤ m− 1, there exists a linear equality gi = 0 such that U i ⇒ gi = 0 and

U i+1 6⇒ gi = 0. These gi’s involve non-trivial occurrences of some variable from V . Also,

these gi’s are linearly independent of each other. Suppose for the purpose of contradiction

that m > ku + 1. Then, we can solve for the variables in V using g2 = 0, . . . , gku+1 = 0 and

obtain g′
1 from g1 using these substitutions such that g′

1 does not involve any variable from

V . Since U1 ⇒ gi = 0 and U2 ⇒ gi = 0 for all 2 ≤ i ≤ m− 1, it follows that U1 ⇒ g′
1 = 0

and U2 6⇒ g′
1 = 0. This is a contradiction since g′

1 does not involve any variable from V .

2

One way to detect when the random interpreter has reached a fixed point is to

compare the rank of the samples (viewed as matrices) at relevant locations in two successive

iterations of a loop. The rank of a sample is one more than the number of variables minus

the number of linearly independent linear equalities that the sample satisfies. Thus, if the

rank has stabilized, the number of linearly independent linear equalities satisfied by S has
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been stabilized, and so has the set of linear equalities satisfied by S. Computing rank of

a matrix of size t × kv takes time O(tk2
v), and hence it may be an expensive operation. A

better strategy may be to iterate around a loop (ku + 1)β times, where β is the number of

back-edges in the loop. Note that it is guaranteed that a fixed point will be reached after

iterating across a loop (ku + 1)β times. This is because if a fixed point is not reached, then

the set of linear equalities corresponding to at least one of the samples at the target of the

back-edges must change, and it follows from Theorem 5 that there can be at most ku such

changes at each program point.

2.2.4 Computational Complexity

The cost of each adjust and affine join operation performed by the random inter-

preter is O(kvt), assuming unit cost for each arithmetic operation. Each assignment opera-

tion takes O(t) time (assuming we perform the optimization discussed in Section 2.2.1). The

random interpreter performs a maximum of 2(ku + 1)βnc adjust and affine join operations

and (ku + 1)βna assignment operations. Since β is usually a small constant, the running

time of the random interpreter is O(nckukvt+ nakut). Theorem 2 requires choosing t to be

3kv/2+3 for probabilistic soundness; this yields an overall complexity of O(nckuk2
v +nakukv)

for the random interpreter.

The worst-case estimation in the previous section suggests that the arithmetic

may need to be performed over a prime field that require O(napku) bits for representation.

However, we feel that this is a conservative analysis, and experiments suggest that 32-bit

primes are good enough.

2.3 Special Case of Non-deterministic Conditionals

In this section, we consider the special case when all conditionals are abstracted

as non-deterministic branches, meaning that the conditional can evaluate to either true or

false irrespective of the program state before it. The random interpreter can reason about

all linear equalities in this case. (We prove a more general result in Chapter 4 regarding the

completeness of the random interpreter for inter-procedural reasoning when all conditionals

are treated as non-deterministic.) The random interpreter does not perform any Adjust

operation in presence of only non-deterministic conditionals, and this allows for proving

better bounds on the computational complexity of the random interpreter.
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First note that a stronger version of Lemma 5 holds:

Lemma 6 [Soundness Lemma] Let S be a sample computed by the random interpreter

at some program point π. Let q be the maximum number of join operations performed by the

random interpreter on any path (leading to π from procedure entry) before computing sample

S. Let U be the corresponding set of linear equalities computed by the abstract interpreter

at that program point. Let g = 0 be a linear equality such that U 6⇒p g = 0. Let S̃ be some

subset of ℓ states from the sample S. Then, Pr(S̃ |= g = 0) ≤
(

q+1
p

)ℓ
.

The proof of Lemma 6 is same as the proof for Lemma 5. Since no Adjust operation

is performed, there is no requirement on t and p (unlike Lemma 5). Also the event AS in

Lemma 5 trivially reduces to true. Using Lemma 6, we can prove the following theorem.

Theorem 6 [Probabilistic Soundness Theorem] Let q = ncp(ku +1)β and q′ = n(ku +

1)β. The probability that all random samples computed by the random interpreter satisfy

only those linear equalities involving k variables that are implied by the corresponding set

of linear equalities computed by the abstract interpreter (over the prime field Fp) is at least

1− q′
(

1
p−1

)2t/3−k
, if p ≥ (q + 1)3 + 1.

Proof. The proof of Theorem 6 is similar to the proof of Theorem 2. Note that there are
pk+1−p

p−1 different linear equalities with coefficients from Fp between k variables and hence

this is an upper bound on the number of linear equalities not implied by U . 2

We can also prove better bounds on the size of the set from which the prime p

needs to be chosen to perform the arithmetic. First, note that in the description of the

abstract interpreter (introduced in Section 2.2.2), we can prove a better bound on b for the

assignment node:

b = log s+ log cm + b′

Hence, the maximum number of bits bm required to represent the numerator and denomi-

nator in each state τ computed by the abstract interpreter is bounded above as follows.

bm ≤ 1 + nap(ku + 1)(log s+ log cm)

Plugging the above bound on bm in Theorem 3 and Theorem 4 yields the error probability as

a function of the size of the set from which the prime is chosen. Note that in this case The-

orem 3 and Theorem 4 imply that the randomly chosen prime field over which the random
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interpreter performs arithmetic computations requires O(log nap) bits for representation of

its elements.

Computational Complexity

We assume that the random interpreter performs the optimization of maintaining

one global state in the SSA version of the program as discussed in Section 2.2.1. Under

that optimization, a join operation reduces to processing phi-assignments at that join point.

Assuming unit cost for each arithmetic operation, the cost of processing each assignment,

both phi and non-phi, is O(t). Fixed-point computation requires the random interpreter

to go around each loop at most (ku + 1)β times (as discussed after Theorem 5). Since β

is usually a small constant, the running time of the random interpreter is O(nskut). If the

goal is to verify linear equalities, then it follows from Lemma 6 that we need to choose t to

be a small constant (even t = 1 is sufficient) for probabilistic soundness. If the goal is to

discover linear equalities involving k variables, then it follows from Theorem 6 that we need

to choose t to be slightly greater than 3k/2 (even t = 3k/2+ 1 is sufficient) for probabilistic

soundness.

The worst-case estimation for the size of the set from which the prime p must be

chosen randomly suggests that the arithmetic may need to be performed over a prime field

whose elements require O(log nap) bits for representation. However, experiments show that

32-bit primes are good enough.

An Alternative Soundness Proof Strategy

We now show a new and simpler proof strategy for probabilistic soundness that

also gives insight into how this algorithm could be extended beyond linear arithmetic. The

probabilistic soundness proof given earlier is complicated to accommodate the Adjust opera-

tion performed by the random interpreter. If we ignore this operation, we can give a simpler

proof of soundness in terms of polynomials. A straight-line sequence of assignments, involv-

ing only linear arithmetic, computes the values of variables at the end as linear polynomials

in terms of the variables live on input. The overall effect of the affine join operation is to

compute the weighted sum of these polynomials corresponding to each path. These weights

themselves are non-linear polynomials in terms of the random weights wi. For example, the

values of a, b, x and y at the end of the program shown in Figure 2.2 (on page 13) can be
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written as follows:

a = w1 × 0 + (1− w1)× (i− 2)

= w1(2− i) + (i− 2)

b = w1 × i+ (1− w1)× 2

= w1(i− 2) + 2

x = w2 × (b− a) + (1− w2)× (2a+ b)

= w2 × (2w1(i− 2) + 4− i) + (1− w2)× (w1(2− i) + 2i− 2)

= w1w2(3i − 6) +w2(6− 3i) + w1(2− i) + 2i− 2

y = w2 × (i− 2b) + (1− w2)× (b− 2i)

= w2 × (2w1(2− i) + i− 4) + (1− w2)× (w1(i− 2) + 2− 2i)

= w1w2(6− 3i) +w2(3i− 6) + w1(i− 2) + 2− 2i

Correspondingly, the two assertions at the end of the program can be written,

respectively, as (w1w2(3i−6)+w2(6−3i)+w1(2− i)+2i−2)+(w1w2(6−3i)+w2(3i−6)+

w1(i−2)+2−2i) = 0 and w1w2(3i−6)+w2(6−3i)+w1(2−i)+2i−2 = (w1(2−i)+(i−2))+i.

Note that the first equality of polynomials is a tautology, while the second is not.

It can be proved that an assertion is true on all paths iff whenever values from

{0, 1} ⊆ Fp are substituted for the wi’s in the polynomials corresponding to the assertions,

the resulting polynomials (in program’s input variables) are equal over Fp. The interesting

aspect is that the polynomials corresponding to the valid assertions remain equal, even if

the wi’s are treated as indeterminates (along with the program’s input variables) over Fp

since these polynomials are multilinear in wi’s, meaning that no wi occurs with an exponent

greater than 1.

The significance of reducing the problem to that of detecting polynomial equality

over variables that take values from a large field lies in the following classic theorem due to

Schwartz and Zippel [Sch80, Zip79].

Theorem 7 [Randomized Polynomial Identity Testing] Let Q1(x1, . . , xm) and

Q2(x1, . . , xm) be two different multivariate polynomials of degree at most d, in variables

x1, . . , xm over some field F. Fix any finite set A ⊆ F, and let r1, . . , rm be chosen inde-

pendently and uniformly at random from A. The probability that this choice is such that

Q1(r1, . . , rm) = Q2(r1, . . , rm) is at most d
|A| .

Schwartz and Zippel’s theorem says that a random evaluation of two different

polynomials will quite likely yield different results. The theorem suggests that the error
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probability in the random interpretation scheme can be reduced by increasing the size of the

set from which the random values are chosen. Additionally, the error probability decreases

exponentially with the number of independent trials. Random testing can be thought

of as an instance of this random interpretation scheme wherein the choice of weights w is

restricted to the small set {0, 1} (this corresponds to executing either the true branch or the

false branch of a conditional); but this gives a useless bound of d/2 for the error probability.

Note that when fully expanded, the polynomials corresponding to the assertions

could be exponential in size of the program; however, this is not a problem since we only

need to evaluate them and our interpreter can evaluate them in time linear in size of the

program.

The lack of a known polynomial time deterministic algorithm for checking the

equality of polynomials (presented as straight-line programs) suggests that randomization

has a chance to surpass deterministic algorithms in those program analysis problems that

can be naturally reduced to checking equality of polynomials. Therefore it is not surprising

that random interpretation works so well for checking equalities in programs that involve

only linear arithmetic computations. We show in the next chapter that even some non-

arithmetic operators can be encoded using polynomials. These schemes are however not as

obvious as for linear arithmetic. We then formalize this notion in Section 4.1.1.

2.4 Related Work

There are a couple of algorithms that have been proposed in the literature for

discovering linear equalities among program variables.

Karr’s algorithm [Kar76] matches the precision of the algorithm that we have

described in this chapter. It performs abstract interpretation over the lattice of linear

equalities. However, its transfer functions are complicated and expensive. The transfer

functions for the assignment node and conditional node take O(k2
v) time, while the transfer

function for the join node, which requires computing the union of affine subspaces, takes

O(k3
v) time. In contrast, our algorithm performs random interpretation over the same

lattice of linear equalities. It uses simpler and efficient operations. It requires O(kv) time

for processing an assignment node, and O(k2
v) time for processing a conditional and a join

node. Karr did not prove any bound on the size of the numbers that may arise during

the computation. Since the transfer functions in the Karr’s algorithm involve multiplying
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two numbers of the same size, an implementation of Karr’s algorithm may have to deal

with numbers that require exponential (in the size of the program) number of bits for

representation. Our algorithm also involves multiplying two numbers of the same size, but

it is able to avoid the problem of dealing with exponentially large numbers by using the

strategy of performing arithmetic modulo a randomly chosen prime number, which in the

worst case requires bits that are linear in the size of the program and the number of program

variables. Karr’s algorithm can also employ the same strategy, but then it no longer remains

a deterministic algorithm.

Cousot and Halbwachs’ algorithm [CH78] discovers linear inequality relationships

among variables. Since linear equalities are a special case of linear inequalities, their algo-

rithm is more precise than our algorithm or Karr’s algorithm. However, it is correspondingly

even more complicated and expensive.

Recently, Müller-Olm and Seidl [MOS04a] specialized Karr’s algorithm for the case

of non-deterministic conditionals. Instead of using linear equalities to represent an affine

space (as is the case in Karr’s algorithm), they use linearly independent vectors to represent

an affine space. Furthermore, using the strategy of semi-naive fixpoint iteration [FS98],

they are able to improve the complexity of Karr’s algorithm to O(nk3
v) for the case of non-

deterministic conditionals (assuming unit cost for arithmetic operations). Our algorithm

when specialized to the case of non-deterministic conditionals has a complexity of O(nskut)

(assuming that the maximum number of back-edges β in any program loop is a small

constant, as discussed in Section 2.3). The quantity t, which denotes the number of states

in each sample computed by the random interpreter, is a small constant if the goal is to

verify linear equalities or to discover linear equalities that involve a constant number of

program variables. If the goal is to discover linear equalities that involve potentially all

program variables, then t = O(kv).
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Chaos umpire sits,
And by decision more embroils the fray
By which he reigns: next him high arbiter
Chance governs all.

John Milton, Paradise Lost.

Chapter 3

Uninterpreted Functions

In this chapter, we consider the problem of discovering equivalences between pro-

gram sub-expressions. This problem is also known as global value numbering for historical

reasons. The general problem of discovering equivalences among program sub-expressions

is undecidable. Hence, we make the following two approximations.

We consider programs that have been abstracted using uninterpreted functions

(i.e., each distinct program operator is represented by a distinct uninterpreted function).

An uninterpreted function F a of arity a satisfies only one axiom: If equal arguments are

passed to two function applications, then equal result is obtained:
( a∧

i=1

ei = e′
i

)

⇒ F a(e1, . . . , ea) = F a(e′
1, . . . , e

′
a) (3.1)

The above axiom is also called the congruence axiom. In other words, F a is an unknown

and a side-effect free function. Uninterpreted functions are a commonly used abstraction

to reason about program operators that are hard to reason about precisely. For example,

consider the programs P1 and P2 shown in Figure 3.1. Program P1 has two assertions at

the end, and both of them are true. In general, reasoning about multiplication (in presence

of addition and over integers) is undecidable. Hence, a commonly used technique is to

abstract away multiplication by an uninterpreted function. Program P2 has been obtained

from program P1 by abstracting the multiplication operator in program P1 using a binary

uninterpreted function F . The disadvantage of such an abstraction is loss of precision; note

that program P2 satisfies only the first assertion. It does not satisfy the second assertion
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a := 5;
x := a× b;
y := 5 × b;
z := b × a;
assert (x = y);
assert (x = z);

a := 5;
x := F (a,b);
y := F (5,b);
z := F (b,a);
assert (x = y);
assert (x = z);

Original Program Abstracted Program

Abstraction

Figure 3.1: Example of program abstraction using uninterpreted functions.

since the uninterpreted function does not obey the commutativity axiom. However, the

advantage is that reasoning about uninterpreted functions is easier than multiplication op-

erator. This form of equivalence, where the operators are treated as uninterpreted functions,

is called Herbrand equivalence.

We also assume that all conditionals in the program are non-deterministic. With-

out this assumption, the problem is undecidable [MORS05].

We present a polynomial time randomized algorithm that discovers all equivalences

among program sub-expressions under the above two assumptions about the program ab-

straction [GN04a]. This program abstraction is described more formally in Section 3.2.

Earlier algorithms for this problem were either exponential, or incomplete, i.e., they did

not discover all equivalences among program sub-expressions (even under the same as-

sumptions of program operators being modeled as uninterpreted functions and conditionals

being treated as non-deterministic).

Applications: Detecting equivalence of program sub-expressions is a prerequisite for

many important optimizations like constant and copy propagation [BA98, WZ91], com-

mon sub-expression elimination, invariant code motion [Cli95, RWZ88], induction variable

elimination, branch elimination, branch fusion, and loop jamming [Muc00]. It is also impor-

tant for discovering equivalent computations in different programs, for example, plagiarism

detection and translation validation [PSS98, Nec00], where a program is compared with the

optimized version in order to check the correctness of the optimizer.
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x := a; z := a;

y := F (a,a);

x := b; z := x;

y := F (b,b);

assert (z = x);

assert (y = F (x,x));

True False
*

Figure 3.2: Example of non-trivial assertions in a program abstracted using uninterpreted
functions.

3.1 Key Ideas

We first give some intuition as to why reasoning about equivalences of expressions

involving uninterpreted functions in a program is non-trivial. Suppose the program expres-

sions belong to the following language of expressions, where F is a binary uninterpreted

function, and x denotes some program variable.

e ::= x | F (e1, e2)

Two expressions in the above language are equal iff they are syntactically equal. Hence,

reasoning about equivalences of such expressions in a straight-line program is easy: com-

pute the symbolic values of all expressions (in terms of uninterpreted functions and input

variables) and check for syntactic equality. The difficulty comes in presence of conditionals

and join points in programs when the symbolic values of expressions cannot be expressed

using simply uninterpreted functions and input variables. For example, consider the pro-

gram shown in Figure 3.2. The symbolic value of x is either a or b depending upon whether

the conditional evaluates to true or false, and hence cannot be expressed using only unin-

terpreted functions and input variables. However, we can express the symbolic value of x

using the standard φ functions used in SSA form. (A φ function should not be confused
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with the affine join operator φw, which takes a weight w as a subscript.)

x = φ(a, b) (3.2)

Similarly, the symbolic values of z and y are:

z = φ(a, b) (3.3)

y = φ(F (a, a), F (b, b)) (3.4)

The symbolic value for F (x, x) can be obtained by application of F to the symbolic value

of x.

F (x, x) = F (φ(a, b), φ(a, b)) (3.5)

The symbolic values of x and z are syntactically identical. However, the symbolic values

of y and F (x, x) are not syntactically identical even though y = F (x, x). This is because a

φ function is not an uninterpreted function; it is more than an uninterpreted function. It

satisfies the following two axioms:

φ(e, e) = e (3.6)

φ(F (e1, e2), F (e′
1, e

′
2)) = F (φ(e1, e′

1), φ(e2, e′
2)) (3.7)

Alpern, Wegman, and Zadeck’s (AWZ) algorithm [AWZ88] reasons about equiv-

alences of program sub-expressions by computing the symbolic values of expressions as

described above. (The AWZ algorithm is described in more detail in Section 3.4.) It treats

φ functions as uninterpreted functions. Hence, it is able to prove that z = x. However, since

it does not capture the semantics of φ functions, it is not able to prove that y = F (x, x).

Our algorithm for reasoning about equivalences of program sub-expressions is

based on the idea of random interpretation, which relies on executing a program on a

number of random inputs and discovering relationships from the computed values. Both

branches of a conditional are executed and at join points the program states are combined

using a random affine combination. Note that our algorithm tries to capture the semantics

of φ functions by giving them an affine join interpretation. An affine join interpretation of

φ functions clearly satisfies Equation 3.6. The challenging part now is to identify how to

execute expressions involving uninterpreted functions such that Equation 3.7 is also satisfied

(under the affine join interpretation of φ functions).
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Expression e Expression e0

I(e) = F (F (a,b),F (c,d ))

= r1[r1(a) + r2(b)] + r2[r1(c) + r2(d )]

= r1
2(a) + r1r2(b+c) + r2

2(d )

F

F

ba

F

dc

F

F

ca

F

db

I(e) = F (F (a,c),F (b,d ))

= r1[r1(a) + r2(c)] + r2[r1(b) + r2(d )]

= r1
2(a) + r1r2(c+b) + r2

2(d )

Figure 3.3: Example of two distinct uninterpreted function terms e and e′ that are equal
when the binary uninterpreted function F is modeled as a linear function of its arguments.

We use the idea of choosing random interpretations for the uninterpreted functions.

For example, let us choose the following class of non-linear random interpretations I for

uninterpreted functions, where r1 and r2 are some random integers.

I(F (e1, e2)) = r1I(e1)2 + r2I(e2)2

I(x) = x

The above interpretation I is good for preserving equivalences of expressions in straight-

line procedures. However, it does not satisfy Equation 3.7 in presence of the affine join

interpretation for φ functions. Similar problems arise for any non-linear interpretation I.

This is because the affine join operation does not preserve non-linear equalities (as pointed

out on page 12 in Section 2.1.1).

Let us now consider random linear interpretations. For example, let us choose the

following class of random interpretations I for uninterpreted functions, where r1 and r2 are

some random integers.

I(F (e1, e2)) = r1I(e1) + r2I(e2)

I(x) = x

The above interpretation I does satisfy Equation 3.6 in presence of the affine join inter-

pretation for φ functions. However, it introduces false equivalences even in straight-line
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programs. For example, consider the two distinct expressions e and e′ in Figure 3.3, repre-

sented as trees. Note that I(e) = I(e′) under the above class of interpretations I. Similar

problems arise for any linear interpretation I.

It appears that we have reached an impasse (if we fix the affine join interpreta-

tion for φ functions). If we choose non-linear interpretations for uninterpreted function

F , then we do not preserve desired equivalences across a join point. If we choose linear

interpretations for uninterpreted function F , then we introduce undesirable equivalences.

3.1.1 Random Linear Interpretation over Vectors

One way to characterize the failure of soundness (i.e., distinct expressions map-

ping to equal expressions) when using linear interpretations is the commutativity of scalar

multiplication. Note that in Figure 3.3, the monomials r1r2b and r2r1b are equal, and so

are the monomials r2r1c and r1r2c. This leads to I(e) = I(e′) even though e 6= e′. We can

potentially avoid this problem by performing multiplication in a non-commutative struc-

ture such as matrices. Similar ideas have been used in algorithms for non-commutative

polynomial identity testing [BW05].

Another way to characterize the failure of soundness when using linear interpre-

tations is that we are restricted to at most three 1 random coefficients, which are too few

to encode a large number of leaves. Thus, it is possible for two distinct trees to have iden-

tical interpretations. To increase the number of coefficients while maintaining linearity, we

may consider maintaining more than one (scalar) value for each variable and thus each

expression. This will enable us to introduce more random parameters in the interpretation

function.

Inspired by the above observations, we propose giving random linear interpreta-

tions to uninterpreted functions over vectors and matrices. Each expression e is mapped to

a value I(e) that is a vector of ℓ integers, using the following interpretation for uninterpreted

functions.

I(F (e1, e2)) = R1I(e1) +R2I(e2)

I(x) = x
1The most general linear mapping I for a binary uninterpreted function F (e1, e2) is I(F (e1, e2)) =

r1I(e1) + r2I(e2) + r3, which uses three random coefficients r1, r2, and r3. Even with this mapping,
I(e) = I(e′), where e and e′ are the distinct expressions shown in Figure 3.3.
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Here R1 and R2 are some randomly chosen ℓ× ℓ matrices. ℓ is a parameter of the random

interpreter, and we will derive lower bounds for ℓ later in this section.

The random matrices R1 and R2 can be sparse as shown below; this allows for

efficient computation of the vector value for F (e1, e2) given the vector values for e1 and e2.

R1 =





r1 0 0 . . . 0 sℓ

s1 r2 0 . . . 0 0

0 s2 r3 . . . 0 0
. . .

0 0 0 . . . rℓ−1 0

0 0 0 . . . sℓ−1 rℓ





and R2 =





r′
1 0 0 . . . 0 s′

ℓ

s′
1 r′

2 0 . . . 0 0

0 s′
2 r′

3 . . . 0 0
. . .

0 0 0 . . . r′
ℓ−1 0

0 0 0 . . . s′
ℓ−1 r′

ℓ





Above, ri, r′
i, si, s′

i are all randomly chosen integers.

Lemma 7 (stated below) characterizes the desired property of the above choice of

linear interpretations I for uninterpreted functions. Note that I uses the sparse random

matrices R1 and R2 shown above (each with 2ℓ entries). Let SEval(e) denote the vector

obtained by applying I to e, but treating the matrix entries ri, r′
i, si, s′

i as variables rather

than random integers. Note that each element in the vector SEval(e) is a polynomial in

program variables as well as the variables ri, r′
i, si, s′

i.

Lemma 7 [Linear Interpretation Soundness Lemma] Let e and e′ be two tree ex-

pressions such that e has at most 2ℓ leaves. If SEval(e) = SEval(e′), then e = e′.

Proof. For an expression e and index i between 1 and ℓ, let Q(e, i) denote the ith element

in the vector SEval(e) after substituting sℓ = s′
ℓ = 0. Thus,

Q(x, i) = x

Q(F (e1, e2), 1) = r1Q(e1, 1) + r′
1Q(e2, 1)

Q(F (e1, e2), i) = riQ(e1, i) + si−1Q(e1, i− 1) + r′
iQ(e2, i) + s′

i−1Q(e2, i− 1) for i > 1

Note that for any i, Q(e, i) does not contain any of the variables ri+1, . . , rℓ,

r′
i+1, . . , r′

ℓ, si, . . , sℓ−1, and s′
i, . . , s′

ℓ−1. This means that the polynomial Q(F (e1, e2), i) can

be decomposed uniquely into the subpolynomials riQ(e1, i) + r′
iQ(e2, i) (all of whose mono-

mials contain variable ri or r′
i), si−1Q(e1, i − 1) (all of whose monomials contain variable

si−1 but not ri or r′
i), and s′

i−1Q(e2, i − 1) (all of whose monomials contain variable s′
i−1
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but not ri, r′
i or si−1). This implies that for any i > 1, we have:

Q(F (e1, e2), i) = Q(F (e′
1, e

′
2), i)⇒ riQ(e1, i) + r′

iQ(e2, i) = riQ(e′
1, i) + r′

iQ(e′
2, i) (3.8)

and Q(e1, i− 1) = Q(e′
1, i− 1) (3.9)

and Q(e2, i− 1) = Q(e′
2, i− 1) (3.10)

We now prove that if Q(e, i) = Q(e′, i), i ≥ j and e has at most 2j leaves for some

i and j, then e = e′. Note that the degree of polynomial Q(e, i) is equal to the depth of

expression e. Hence, if Q(e, i) = Q(e′, i), then Q(e, i) and Q(e′, i) have the same degree,

and hence e and e′ have the same depth. The proof is by induction on the depth of e. The

base case is trivial since e and e′ are both leaves and Q(e, i) = e and Q(e′, i) = e′. For the

inductive case, e = F (e1, e2) and e′ = F (e′
1, e′

2). Suppose Q(F (e1, e2), i) = Q(F (e′
1, e′

2), i)

for some i ≥ j. Since e has at most 2j leaves, it must be that at least one of e1 or e2 has

at most 2j−1 leaves. Consider the case when e1 has at most 2j−1 leaves (the other case is

symmetric). From Equation 3.9, we have that Q(e1, i−1) = Q(e′
1, i−1). Since i−1 ≥ j−1,

we can apply the induction hypothesis for e1 and e′
1 to obtain that e1 = e′

1. Consequently,

Q(e1, i) = Q(e′
1, i). This allows us to simplify Equation 3.8 to Q(e2, i) = Q(e′

2, i). Since e2

has at most 2j leaves, we can apply the induction hypothesis for e2 and e′
2 to conclude that

e2 = e′
2. This completes the proof. 2

The above soundness lemma implies that SEval is an injective mapping from

expressions to vectors of polynomials, and hence allows us to compare expressions e by

random testing of their corresponding polynomials in SEval(e). Note that the larger the size

ℓ of vectors SEval(e) is, the larger is the size of the expressions e that can be compared. The

parameter ℓ must be at least the logarithm of the number of leaves in the tree representation

of the expressions. Interestingly, this value does not depend on the depth of the expressions.

A consequence is that expressions involving only unary constructors can be discriminated

with ℓ = 1, independent of their depth. The expressions involving binary uninterpreted

functions and computed by a straight-line program are representable using DAGs (directed

acyclic graphs) of size linear in the size of the program. The number of leaves in the tree

representation of such expressions may be exponential in the depth of those expressions in

the worst case. Thus, in order to distinguish such expressions, ℓ must be chosen to be the

depth of those expressions in the worst case. We have performed a number of experiments

that suggest that an even tighter bound on ℓ might be possible, but we are not able to prove
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(a) Assignment 
Node

(b) Non-deterministic 
Assignment Node

(d) Join Node

x := e;

0

, U, G

0, U 0, G 0~

~
x := ?

0

, U, G

0, U 0, G 0~

~

(c) Non-deterministic 
Conditional Node 

2,U 2,G2

*True False
1 1, U 1, G 1 2

, U, G~

~ ~ , U, G~

~ ~ 2,U 2,G21 1, U 1, G 1 2

Figure 3.4: Flowchart nodes considered in the uninterpreted functions analysis.

any such result at the moment. (We feel that it may be possible to prove a result similar

to Lemma 7 for the DAG representation of expressions too. Using less sparse matrices R1

and R2 may help towards proving any such result.)

3.2 The Random Interpreter

We assume that each procedure is abstracted using the flowchart nodes shown in

Figure 3.4. Related to this program model, we continue to use the notation established

in Section 2.2. The expression e here denotes an uninterpreted function term constructed

from the following expression language:

e ::= x | F (e1, e2)

Here F is a binary uninterpreted function. Note that this is an intra-procedural analysis.

The procedure calls have to be abstracted using non-deterministic assignments.

For simplicity, we consider only one binary uninterpreted function F above. The

analysis can be easily extended to incorporate any number of uninterpreted functions of

any arity. Alternatively, we can model any uninterpreted function F a of any constant arity

a using the given binary uninterpreted function F by employing the following closure trick:

F a(e1, . . . , ea) = F (e1, e′
2), where e′

i =

{
F (ei, e′

i+1) for 2 ≤ i ≤ a− 1

F (ea, xF a) for i = a

Here xF a is a fresh variable (can be regarded as a new input variable) associated with the

uninterpreted function F a. If we regard a to be a constant, then this modeling does not alter

the quantities (except by a constant factor) such as ns or ku on which the computational

complexity of the algorithm depends.
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3.2.1 Basic Algorithm

The random interpreter executes each procedure in the program like an abstract

interpreter or a data-flow analyzer. It maintains for each program point a state that maps

program variables to (column) vectors with ℓ entries from the field Fp. These states encode

Herbrand equivalences, or equivalences among uninterpreted function terms of the program.

Theorem 10 (on page 60) specifies the error probability of the random interpreter as a

function of the parameters ℓ and p. The number of entries in each vector can be chosen to

be ℓ = dm(ku + 1)β + de, where dm is the maximum depth of any expression computed by

the program along any acyclic path without taking any back-edge 2 and de is the maximum

depth of expressions whose equivalences we want to decide. However, experiments suggest

that even ℓ = log (dm(ku + 1)β + de) does not yield any error in practice. The prime p can

be chosen to be any 32-bit prime.

A state at a program point is obtained from the state(s) at the immediately pre-

ceding program point(s). In presence of loops, the random interpreter goes around each

loop until a fixed point is reached. The criterion for a fixed point is defined in Section 3.2.3.

We now describe the action of the random interpreter on the flowchart nodes shown in

Figure 3.4.

Initialization: At procedure entry, the random interpreter starts with an initial state ρ0

that assigns to each variable x the column vector (rx, . . . , rx)T (i.e., transpose of the vector

(rx, . . . , rx)), where rx is an element chosen u.a.r. from Fp.

ρ0(x) = (rx, . . . , rx)T , where rx = Rand()

Note that all elements of the vector ρ0(x) are assigned the same random value rx. However,

for each variable x, the random value rx is chosen independently of the random choice ry

for any other variable y. The random interpreter initializes the states at all other program

points to ⊥.

Assignment Node: See Figure 3.4 (a).

If the state ρ′ before the assignment node is ⊥, then the state ρ after the assignment node

is also ⊥. Else, the random interpreter transforms the state ρ′ before an assignment node
2Clearly, dm is bounded above by the maximum number of occurrences of the uninterpreted function

symbol F in any procedure.
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x := e by setting x to the value of e in that state, which is denoted by Eval(e, ρ′).

ρ = ρ′[x← Eval(e, ρ′)]

The random interpreter evaluates an expression e in a state ρ by giving random linear

interpretations to the uninterpreted function F as described in Section 3.1.1.

Eval(x, ρ) = ρ(x)

Eval(F (e1, e2), ρ) = R1 × Eval(e1, ρ) +R2 × Eval(e2, ρ)

R1 and R2 are the random sparse matrices shown in Section 3.1.1. These are chosen once at

the start, and the same matrices are used for all occurrences of the uninterpreted function

F . The × operator above refers to the multiplication of a ℓ× ℓ matrix by a column vector

of size ℓ. The + operator above refers to the addition of two column vectors of size ℓ. All

operations are performed over the field Fp.

If the expression language e consists of other uninterpreted functions, the Eval

function can be defined as follows. For a unary function F 1, Eval(F 1(e), ρ) can be de-

fined to be R1 × Eval(e, ρ) + R2, while for any a-ary uninterpreted function F a for a > 1,

Eval(F a(e1, . . . , ea), ρ) can be defined to be
a∑

i=1
Ri × Eval(ei, ρ). For each distinct uninter-

preted function symbol, a different set of random sparse matrices Ri are chosen. However,

the same set of random matrices is used for all occurrences of a particular uninterpreted

function.

Non-deterministic Assignment Node: See Figure 3.4 (b).

If the state ρ′ before the assignment node is ⊥, then the state ρ after the assignment node

is also ⊥. Else, the random interpreter processes the assignment x :=? by transforming the

state ρ′ by setting x to some fresh random value.

ρi = ρ′
i[x← [r, . . . , r]T ], where r = Rand()

Non-deterministic Conditional Node: See Figure 3.4 (c).

The random interpreter simply copies the state before the conditional on the two branches

of the conditional.

ρ1 = ρ and ρ2 = ρ



CHAPTER 3. UNINTERPRETED FUNCTIONS 57

Join Node: See Figure 3.4 (d).

If any one of the states before a join node is ⊥, the random interpreter assigns the other

state before the join node to the state after the join node. Else, the random interpreter

chooses w u.a.r from Fp and performs an affine join of the two states ρ1 and ρ2 before the

join node to obtain the state ρ after the join node.

ρ = φw(ρ1, ρ2), where w = Rand()

Note that by definition of φw, we have ρ(x) = w× ρ1(x) + (1−w)× ρ2(x). Here × operator

refers to the multiplication of the column vector ρ1(x) by the scalar w, and the + operator

refers to the addition of two column vectors (over the field Fp).

Verifying or Discovering Equal Program Sub-expressions

After fixed-point computation, the results of the random interpreter can be used

to verify or discover equivalences among program sub-expressions at any program point as

follows. Let ρ be the state computed by the random interpreter at program point π. If

ρ = ⊥, the random interpreter declares program point π to be unreachable. Else, it declares

expressions e1 and e2 to be equal at program point π iff Eval(e1, ρ) = Eval(e2, ρ).

Optimization

Maintaining a state explicitly at each program point is expensive (in terms of time

and space complexity) and redundant. The optimization of maintaining one global state

for the SSA version of the program, as discussed in Section 2.2.1, applies here as well.

3.2.2 Error Probability Analysis

For the purpose of the random interpreter’s analysis, we introduce two new inter-

preters: a symbolic random interpreter, which is a symbolic version of the random inter-

preter, and an abstract interpreter that is known to be complete and sound. We prove that

the symbolic random interpreter is as complete and as sound as the abstract interpreter. We

then show that this implies that the random interpreter is complete and probabilistically

sound.
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The Symbolic Random Interpreter

The symbolic random interpreter maintains symbolic states ρ̃ and executes a pro-

gram like the random interpreter but symbolically. Instead of using random values for the

initial values for variables, or the parameters w, ri, r′
i, si, and s′

i, it uses variable names

and maintains symbolic expressions. We write A(e, ρ̃) to denote the symbolic value of ex-

pression e in symbolic state ρ̃. We also write ρ̃ |= e1 = e2 when A(e1, ρ̃) = A(e2, ρ̃). We

use the notation Degree(A(e, ρ̃)) to refer to the degree of the symbolic polynomials that are

the elements of the symbolic vector A(e, ρ̃) while ignoring the contribution of the weight

variables w to the degree. Note that all these polynomials have the same degree.

The following property states the relationship between the states computed by the

random interpreter and the symbolic states computed by the symbolic random interpreter.

Property 2 Let ρ̃ be a symbolic state computed by the symbolic random interpreter at

some program point π. Let ρ be the corresponding state computed by the random interpreter

at π. The state ρ can be obtained from the symbolic state ρ̃ by substituting the input variables,

the weight and parameter variables w, ri and si with the values that the random interpreter

has chosen for them.

The Abstract Interpreter

The abstract interpreter computes a set of Herbrand equivalences U at each pro-

gram point. We write U ⇒ e1 = e2 to say that the conjunction of Herbrand equivalences in

U implies e1 = e2. We write U1 ∩ U2 for the set of Herbrand equivalences that are implied

by both U1 and U2. Finally, we write U [e/x] for the relationships that are obtained from

those in U by substituting expression e for variable x. For notational convenience, we let

⊥ represent an inconsistent set of Herbrand equivalences. We say that ⊥ ⇒ e1 = e2 for

all expressions e1 and e2. With these definitions we now define the action of the abstract

interpreter over the flowchart nodes shown in Figure 3.4.

Initialization: The abstract interpreter initializes U to the empty set of Herbrand equiv-

alences at procedure entry. At all other points, it initializes U to ⊥.

Assignment Node: See Figure 3.4 (a).

If U ′ = ⊥, then U = ⊥. Else, U = {x = e[x′/x]} ∪ U ′[x′/x], where x′ is a fresh variable.
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Non-deterministic Assignment Node: See Figure 3.4 (b).

If U ′ = ⊥, then U = ⊥. Else, U = U ′[x′/x], where x′ is a fresh variable.

Non-deterministic Conditional Node: See Figure 3.4 (c).

U1 = U and U2 = U .

Join Node: See Figure 3.4 (d).

If U1 = ⊥, then U = U2. Else, if U2 = ⊥, then U = U1. Else, U = U1 ∩ U2.

Implementations of the abstract interpreter defined above have been described in

the literature [Kil73]. The major concern there is the concrete representation of the set U

and the implementation of the operation U1 ∩ U2. In Kildall’s original presentation, the

set U has an exponential-size representation, although this is not necessary [RKS99]. Here

we use the abstract interpreter only to state and prove the completeness and soundness

results of the random interpreter. The abstract interpreter is sound and complete when all

operators are uninterpreted and conditionals are non-deterministic [Ste87, RKS99].

We now state the relationship between the symbolic states ρ̃ computed by the

symbolic random interpreter and the Herbrand equivalences U computed by the abstract

interpreter in the form of completeness and soundness theorems.

Theorem 8 [Completeness Theorem] Let U be a set of Herbrand equivalences com-

puted by the abstract interpreter at some program point π. Let ρ̃ be the corresponding

symbolic state computed by the symbolic random interpreter at π. Let e1 and e2 be any two

expressions such that U ⇒ e1 = e2. Then, ρ̃ |= e1 = e2.

The completeness theorem implies that the symbolic random interpreter (and

hence the random interpreter) discovers all the Herbrand equivalences that the abstract

interpreter discovers. The proof of Theorem 8 is based on Lemma 8 which is stated and

proved below. Lemma 8 states that the affine join of two states ρ̃1 and ρ̃2 satisfies all the

Herbrand equivalences that are satisfied by both the states ρ̃1 and ρ̃2. The full proof of

Theorem 8 is given in Appendix B.1.

Lemma 8 [Affine Join Completeness Lemma] Let ρ̃1 and ρ̃2 be two symbolic states

that satisfy the Herbrand equivalence e1 = e2. Then, for any choice of weight w, φw(ρ̃1, ρ̃2),

which is the affine join of ρ̃1 and ρ̃2, also satisfies the same Herbrand equivalence e1 = e2.
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Proof. Note that for any expression e, and any symbolic state ρ̃, all elements of the

vector A(e, ρ̃) are a linear function of the program variables in expression e. Hence, for

any affine combination φw(ρ̃1, ρ̃2) of two symbolic states ρ̃1 and ρ̃2, it can be easily verified

that A(e, φw(ρ̃1, ρ̃2)) = w×A(e, ρ̃1) + (1−w)×A(e, ρ̃2). It thus follows that if A(e1, ρ̃1) =

A(e2, ρ̃1) and A(e1, ρ̃2) = A(e2, ρ̃2), then A(e1, φw(ρ̃1, ρ̃2)) = A(e2, φw(ρ̃1, ρ̃2)). From here

the completeness lemma follows immediately. 2

It is not surprising that the completeness lemma holds, since we have chosen the

linear interpretations of operators specifically to satisfy this constraint. Next we state the

soundness theorem.

Theorem 9 [Soundness Theorem] Let U be a set of Herbrand equivalences computed

by the abstract interpreter at some program point π. Let ρ̃ be the corresponding symbolic

state computed by the symbolic random interpreter at π. Let e1 and e2 be two expressions

such that ρ̃ |= e1 = e2, and ℓ ≥ Degree(A(e1, ρ̃)). Then, U ⇒ e1 = e2.

According to Theorem 9, if the symbolic polynomials associated with two expres-

sions under our random interpretation scheme are equal, then those two expressions are also

found equal by the abstract interpreter. The proof of Theorem 9 is based on Lemma 7 (on

page 7). Notice, however, that in Theorem 9 the lower bound on ℓ is stated based on the

degree of A(e, ρ̃), which is equal to the depth of expression e, while in Lemma 7, it is based

on the logarithm on the number of leaves. The reason for this weakening of the soundness

statement is two-fold: it would have been more complicated to carry out the proof with

leaf counts, and in the worst case these measures are equal. The full proof of Theorem 9

(which is by induction on the number of operations performed by the interpreters) is given

in Appendix B.2.

It follows from the discussion after Theorem 11 in the next section that the random

interpreter goes around each loop at most (ku + 1)β times for fixed-point computation¡. We

use this observation along with Theorem 9 to prove Theorem 10, which establishes an upper

bound on the probability that the random interpreter is unsound.

Theorem 10 [Probabilistic Soundness Theorem] Let e1 and e2 be two unequal ex-

pressions of depth at most de at some program point π. Let dm be the maximum depth of

any expression computed by the program along any acyclic path without taking any back-
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edge. Let ρ be the random state computed by the random interpreter at π after fixed-point

computation. If ℓ ≥ dm(ku + 1)β + de, then Pr[ρ |= e1 = e2] ≤ (dm+nc)(ku+1)β+de
p .

Proof. Let ρ̃ be the corresponding symbolic state, and U be the corresponding set of

Herbrand equivalences at π. Since the abstract interpreter is sound, U 6⇒ e1 = e2. It

follows from the discussion after Theorem 11 that the random interpreter goes around

each loop at most (ku + 1)β times for fixed-point computation. Hence, Degree(A(e1, ρ̃)) ≤

dm(ku + 1)β+de. It thus follows from Theorem 9 that ρ̃ 6|= e1 = e2. Note that the degree of

the polynomials that are elements of the vector A(e1, ρ) are at most (dm +nc)(ku +1)β+de.

The desired result now follows from Property 2 and Theorem 7. 2

Theorem 10 implies that by choosing p big enough, the error probability can be

made as small as we like. In particular, if (dm + nc)(ku + 1)β + de < 103, and if we

choose q ≈ 232 (which means that the random interpreter can perform arithmetic using

32-bit numbers), then the error probability is bounded above by 10−6. By repeating the

algorithm m times, the error probability can be further reduced to 10−6m.

3.2.3 Fixed-point Computation

In presence of loops in procedures, the random interpreter goes around loops just

like any abstract interpreter or a data-flow analyzer until a fixed point is reached. We say

that the random interpreter reaches a fixed point across a loop when the sets of Herbrand

equivalences (computed by the abstract interpreter defined earlier) corresponding to the

states computed by the random interpreter reach a fixed point. Note that the states com-

puted by the random interpreter themselves do not reach a fixed point, but the Herbrand

equivalences represented by them do.

The elements of the abstract lattice over which the abstract interpreter performs

computations are sets of Herbrand equivalences between program variables. These elements

are ordered by the implication relationship (i.e., if U2 is above U1 in the abstract lattice,

then U1 ⇒ U2). The following theorem provides a bound on the number of iterations

required to reach a fixed point across a loop.

Theorem 11 [Fixed Point Theorem] Let U1, . . . , Um be the sets of Herbrand equiva-

lences that are computed by the abstract interpreter at some point π inside a loop in succes-
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sive iterations of that loop such that U i 6≡ U i+1. Then, m ≤ ku + 1, where ku is the number

of variables that are visible at π as well as modified inside that loop.

The proof of Theorem 11 follows from Lemma 9 and Property 3 stated below.

We first introduce some notation before stating the desired results. For any expres-

sion e, we use the notation Vars(e) to denote the set of variables that occur in expression

e. Let 4 denote any total ordering on all program variables. We use the notation x ≺ y to

denote that x 4 y, and that x and y are distinct variables. For notational convenience, we

say that for any variable x, and expressions e1 and e2, F (e1, e2) ≺ x.

Lemma 9 Let Vπ denote the set of variables that are visible at program point π. The

Herbrand equivalences at program point π can be represented by a pair H = (V,E), where

V ⊆ Vπ is a set of independent variables and E is a set of equivalences x = e, one for each

variable x ∈ Vπ − V , such that Vars(e) ⊆ V . Furthermore, if x ∈ V , then x ≺ y for all

variables y such that (y = x) ∈ E.

The proof of this lemma is by induction on structure of the program and is given

in Appendix B.3.

Property 3 Let (V1, E1) and (V2, E2) represent the Herbrand equivalences computed by

the abstract interpreter at any point inside a loop in two successive iterations of that loop.

Suppose E2 is a weaker set of equivalences than E1. Then V2 ⊃ V1.

Proof. We first make two useful observations. Let (V,E) represent the Herbrand equiva-

lences at any program point. Then, (a) E 6⇒ x = e if x ∈ V , and e ≺ x. (b) E 6⇒ e1 = e2 if

Vars(e1) ⊆ V , Vars(e2) ⊆ V and e1 6≡ e2.

We first show that V2 ⊇ V1. Suppose for the purpose of contradiction that V2 6⊇ V1.

Then, E2 ⇒ x = e for some variable x ∈ V1 and expression e such that e ≺ x. Since E1

represents a stronger set of equivalences, E1 ⇒ x = e. But this is not possible because of

observation (a) above.

We now show that V2 ⊃ V1. Suppose for the purpose of contradiction that V2 = V1.

Since E1 is stronger than E2, E1 ⇒ x = e1 for some x ∈ Vπ − V1 and expression e1 such

that Vars(e1) ⊆ V1 and E2 6⇒ x = e1. Note that x ∈ Vπ − V2 since V2 = V1. Hence, there

exists an expression e2 such that E2 ⇒ x = e2, where Vars(e2) ⊆ V2. Note that e1 6≡ e2
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since E2 6⇒ x = e1 and E2 ⇒ x = e2, Since E1 is stronger than E2, E1 ⇒ x = e2 and hence

E1 ⇒ e1 = e2. But this is not possible because of observation (b) above. 2

Note that if (V1, E1) and (V2, E2) represent the Herbrand equivalences computed

by the abstract interpreter at some program point π inside a loop in two successive iterations,

then (V2 − V1) is a subset of the variables that are visible at π as well as modified inside

the loop. The proof of Theorem 11 now follows from Lemma 9 and Property 3.

One way to detect when the random interpreter has reached a fixed point is to

compare the sets of Herbrand equivalences implied by the random interpreter in two suc-

cessive executions of a loop (this can be done by building a symbolic value flow graph of

the program [RKS90], and then a disjoint partition of its nodes into congruence classes).

If these sets are identical, then a fixed point for that loop has been reached. Computing

the sets of Herbrand equivalences over the symbolic value flow graph takes time O(ns × ℓ),

and hence it may be an expensive operation. A better strategy may be to iterate around a

loop (maximal strongly connected component) (ku + 1)β times, where β is the number of

back-edges in the loop. Note that it it guaranteed that a fixed point will be reached after

iterating across a loop (ku + 1)β times. This is because if a fixed point is not reached, then

the set of Herbrand equivalences corresponding to at least one of the states (computed by

the random interpreter) at the target of the back-edges must change, and it follows from

Theorem 11 that there can be at most ku + 1 such changes at each program point.

3.2.4 Computational Complexity

We assume that the random interpreter performs the optimization of maintaining

one global state in the SSA version of the program as discussed in Section 3.2.1. Under that

optimization, a join operation reduces to processing phi-assignments at the corresponding

join point. The cost of processing each assignment, both phi and non-phi, is O(ℓ). Comput-

ing the set of Herbrand equivalences from the global state for detecting a fixed point may

be an expensive operation; hence it may be more efficient for the random interpreter to go

around each loop kuβ times (as discussed after Theorem 5). Hence, the total number of

operations performed by the random interpreter is bounded above by (nskuβ). Assuming β

to be constant, the running time of the random interpreter is O(ℓnsku). Note that we choose

ℓ to be greater than dm(ku + 1)β in order to satisfy the requirement for probabilistic sound-

ness, where dm is the maximum depth of any expression computed by the program along
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any acyclic path without taking any back-edge. Hence, this yields an overall complexity of

O(nsk2
udm) for the random interpreter.

Our analysis for probabilistic soundness requires choosing ℓ to be greater than

dm(ku + 1)β. However, we feel that our analysis is conservative. The experiments that

we have performed also suggest that tighter bounds on ℓ might be possible, but we are

not able to prove any such result at the moment. Note that Lemma 7 requires working

with vectors of size only log t, where t is the size of the tree expressions. If we can prove

a similar lemma for DAGs, then we can prove that choosing ℓ = O(log ns) is sufficient

for probabilistic soundness, which will yield an overall complexity of O(nsku log ns) for the

random interpreter.

3.3 Deterministic Algorithm

In this section, we describe a polynomial-time deterministic algorithm, which is as

precise as the randomized algorithm that we have described earlier in this chapter. This de-

terministic algorithm is however slightly less efficient than the randomized algorithm. This

deterministic algorithm discovers all equivalences among program sub-expressions when all

program operators have been abstracted away as uninterpreted functions, and all condi-

tionals have been abstracted away as non-deterministic conditionals.

Earlier, there had been several attempts at developing a polynomial-time deter-

ministic algorithm for this problem. For us, the inspiration to develop a polynomial-time

deterministic algorithm actually came after developing the randomized algorithm. It is

believed that randomization cannot yield an exponential-time speedup compared to deter-

ministic algorithms; though it can yield algorithms that are more efficient than the best

possible deterministic algorithm by a polynomial factor. After developing a polynomial-

time randomized algorithm for this problem, we thought that quite likely that there must

also be a polynomial-time deterministic algorithm since not many problems are known that

have a polynomial-time randomized algorithm but no polynomial-time deterministic algo-

rithm. 3 The randomized algorithm performs a forward analysis over the lattice of Herbrand

equivalences. This pointed towards the existence of a deterministic forward analysis over
3Until recently, there were two interesting problems, polynomial identity testing, and primality test-

ing, for which a polynomial-time randomized algorithm was known but no polynomial-time deterministic
algorithm was known. Recently, primality testing was shown to be have a polynomial-time deterministic
algorithm [AKS02].
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the same lattice. We first guessed that fixed-point computation was not really the problem,

as opposed to what was claimed in one of the earlier attempts [RKS99]; this even led us to

uncover a bug in the completeness claim in the corresponding paper. The challenge that

we were facing was in computing the join of two sets of Herbrand equivalences. The size of

the result of a single join operation is, in the worst case, product of the sizes of the input

sets, and a naive analysis means that the result after t joins may be exponential in t. We

tried hard to prove better bounds for an amortized analysis only to come across a concrete

example that in fact exhibited the worst case. (This example is described in [GN04b].)

We then turned our attention to the randomized algorithm to see how it was representing

such exponentially sized equivalences. The randomized algorithm represents equivalences

of expressions of bounded depth, which is sufficient to identify equal sub-expressions in

a program. This gave us the idea of performing an approximate join operation (in the

deterministic algorithm) that maintains equivalences of bounded size.

The deterministic algorithm takes an integral parameter se (which denotes the

maximum size of the expressions whose equivalences we are interested in) and discovers

all equivalences of the form e1 = e2 if size(e1) ≤ se and size(e2) ≤ se. Here, size(e)

denotes the number of function applications of the binary uninterpreted function F in the

DAG representation of expression e. The algorithm uses a data structure called Strong

Equivalence DAG (described in Section 3.3.1) to represent the set of equivalences at any

program point. It updates the data structure across each flowchart node using the transfer

functions described in Section 3.3.2.

3.3.1 Strong Equivalence DAG

The algorithm represents the set of equivalences at any program point by a data

structure that we call Strong Equivalence DAG (SED). An SED is similar to a value

graph [Muc00]. It is a labeled directed acyclic graph whose nodes η can be represented

by tuples 〈V, h〉 where V is a (possibly empty) set of program variables labeling the node,

and h represents the type of node. The type h is either ⊤ indicating that the node has no

successors, or F (η1, η2) indicating that the node has two ordered successors η1 and η2.

In any SED G, for every variable x, there is exactly one node 〈V, h〉, denoted by

NodeG(x), such that x ∈ V . For every type h that is not ⊤, there is at most one node

with that type. For any SED node η, we use the notation Vars(η) to denote the set of
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x := a; y := a;

z := F (a,a);

x := b; y := b;

z := F (b,b);

u := F (F (x,y),x);

1 2

3

4

assert(u = F (z,x));

0 G0

G1

G 3 = Join(G1,G 2,5)

G4 = Assignment(G3, u := F (F (x,y),x))

*
True False

G2

hz,>i

hx,>ihu,>i

hy,>i

hb,>i

ha,>i

hz, F i

hx,y,a,>ihu,>i

hb,>i

hz, F i

hx,y,>ihu,>i

ha,>i
hb,>i

hu, F i

hz, F i

hx,y,>i

ha,>i

hb,>i

hz, F i

hx,y,b,>ihu,>i

ha,>i

Figure 3.5: Computing Herbrand equivalences using abstract interpretation. Gi, shown in
dotted box, represents the SED at program point πi.

variables labeling node η, and Type(η) to denote the type of node η. Every node η in an

SED represents the following set of terms Terms(η), which are all known to be equal.

Terms(〈V,⊤〉) = V

Terms(〈V, F (η1, η2)〉) = V ∪ {F (e1, e2) ‖ e1 ∈ Terms(η1), e2 ∈ Terms(η2)}

We use the notation G |= e1 = e2 to denote that G implies the equivalence e1 = e2. The

judgment G |= e1 = e2 is deduced as follows.

G |= F (e1, e2) = F (e′
1, e

′
2) iff G |= e1 = e′

1 and G |= e2 = e′
2

G |= x = e iff e ∈ Terms(NodeG(x))

In figures showing SEDs, we omit the set delimiters “{” and “}”, and repre-

sent a node 〈{x1, . . , xj}, h〉 as 〈x1, . . , xj , h〉 for simplicity. Figure 3.5 shows a program
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and the SEDs computed by our algorithm at various points. As an example, note that

Terms(NodeG4(u)) = {u}∪{F (z, α) ‖ α ∈ {x, y}}∪{F (F (α1, α2), α3) ‖ α1, α2, α3 ∈ {x, y}},

and henceG4 |= u = F (z, x). Note that an SED represents compactly a possibly exponential

number of equal terms.

For notational convenience, we extend the definition of an SED to also include an

undefined SED, denoted by ⊥. We also say that ⊥ |= e1 = e2 for all expressions e1 and e2.

3.3.2 Basic Algorithm

The algorithm computes the SEDs (which represent Herbrand equivalences) at

each program point by performing a forward analysis on the flowchart nodes. The algorithm

uses the following transfer functions to compute the SEDs across the flowchart nodes shown

in Figure 3.4 (on page 54) until a fixed point is reached. It follows from Theorem 11 that

a fixed point for a loop is reached in at most ku + 1 iterations.

Initialization: At procedure entry, the algorithm starts with the following initial SED

G, which implies only trivial equivalences. The SEDs at other program points is initialized

to be ⊥.

G = {〈{x},⊤〉 ‖ x is a program variable}

Assignment Node: See Figure 3.4 (a).

If the SED G′ before the assignment node is ⊥, then the SED G after the assignment node

is also ⊥. Otherwise, the SED G after an assignment node x := e is obtained from the

SED G′ before the assignment node using the following Assignment operation. SED G4 in

Figure 3.5 shows an example of the Assignment operation.

Assignment(G′, x := e) =

1 G := G′;

2 let 〈V1, h1〉 = GetNode(G, e) in

3 let 〈V2, h2〉 = NodeG(x) in

4 ReplaceVars(G, 〈V1, h1〉, V1 ∪ {x});

5 ReplaceVars(G, 〈V2, h2〉, V2 − {x});

6 return G;
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GetNode(G, e) =

1 match e with

2 y: return NodeG(y);

3 F (e1, e2): let η1 = GetNode(G, e1) and η2 = GetNode(G, e2) in

4 if 〈V, F (η1, η2)〉 ∈ G for some V then return 〈V, F (η1, η2)〉;

5 else G := G ∪ 〈∅, F (η1, η2)〉; return 〈∅, F (η1, η2)〉;

GetNode(G, e) returns a node η such that e ∈ Terms(η) (and in the process possibly

extends G) in O(size(e)) time. ReplaceVars(G, η, V ) replaces the set of variables in node

η by V (in place) in SED G. Lines 4 and 5 in Assignment operation move variable x to the

node GetNode(G, e) to reflect the equivalence x = e. Hence, the following lemma holds.

Lemma 10 [Soundness and Completeness of Assignment Operation] Let G =

Assignment(G′, x := e). Let e1 and e2 be two expressions. Let e′
1 = e1[e/x] and e′

2 =

e2[e/x]. Then, G |= e1 = e2 iff G′ |= e′
1 = e′

2.

Non-deterministic Assignment Node: See Figure 3.4 (b).

If the SED G′ before the non-deterministic assignment node is ⊥, then the SED G after

the assignment node is also ⊥. Otherwise, the SED G after a non-deterministic assignment

node x :=? is simply obtained from the SED G′ before the non-deterministic assignment

node by removing variable x from NodeG′(x), and creating a new node 〈{x},⊤〉.

Non-det-Assignment(G′, x :=?) =

1 G := G′;

2 let 〈V, h〉 = NodeG(x) in

3 ReplaceVars(G, 〈V, h〉, V − {x});

4 G := G ∪ {〈{x},⊤〉};

5 return G;

Non-deterministic Conditional Node: See Figure 3.4 (c).

The SEDs G1 and G2 on the two branches of the non-deterministic conditional node are

simply a copy of the SED G before the non-deterministic conditional node.

Join Node: See Figure 3.4 (d).

If at least one of the SEDs G1 or G2 before the join node is ⊥, then the SED after the join
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node is assigned the other SED. Otherwise, the SED G after the join node is computed

using the following Join operation. Join takes two SEDs G1 and G2, and a positive integer

s′
e as input, and returns an SED G that represents all equivalences e1 = e2 such that both

G1 and G2 imply e1 = e2 and both size(e1) and size(e2) are at most s′
e. In order to discover

all equivalences among expressions of size at most se in the program, we need to choose

s′
e = se +sm(ku +1) (for reasons explained later in Section 3.3.3), where sm is the maximum

size of any expression computed by the program along any acyclic path without taking any

back-edge. Figure 3.5 shows an example of the Join operation.

For any SED G, let ≺G denote a partial order on program variables such that

x ≺G y if y depends on x, or more precisely, if G |= y = F (e1, e2) and x ∈ Vars(F (e1, e2)).

Join(G1,G2,s′
e) =

1 for all nodes η1 ∈ G1 and η2 ∈ G2 do

2 memoize [η1, η2] := ⊥;

3 G := ∅;

4 for each program variable x in the order ≺G1 do

5 counter := s′
e;

6 Intersect(NodeG1(x),NodeG2(x));

7 return G;

Intersect(〈V1, h1〉,〈V2, h2〉) =

1 let η = memoize(〈V1, h1〉, 〈V2, h2〉) in

2 if η 6= ⊥ then return η;

3 let h = if counter > 0 and h1 ≡ F (a1, b1) and h2 ≡ F (a2, b2) then

4 counter := counter − 1;

5 let a = Intersect(a1,a2) in

6 let b = Intersect(b1,b2) in

7 if (a 6= 〈∅,⊤〉) and (b 6= 〈∅,⊤〉) then F (a, b) else ⊤

8 else ⊤ in

9 let V = V1 ∩ V2 in

10 if V 6= ∅ or h 6= ⊤ then G := G ∪ {〈V, h〉};

11 memoize[〈V1, h1〉, 〈V2, h2〉] := 〈V, h〉;

12 return 〈V, h〉;
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It is important for correctness of the Join operation that calls to the Intersect

function are memoized, as done explicitly in the above pseudo code, since otherwise the

counter variable will be decremented incorrectly. The use of counter variable ensures that

the call to Intersect function in Join terminates in O(s′
e) time. The following property of

Intersect function is required to prove the correctness of the Join operation (Lemma 11).

Property 4 Let η1 = 〈V1, h1〉 and η2 = 〈V2, h2〉 be any nodes in SEDs G1 and G2

respectively. Let η = 〈V, h〉 = Intersect(η1, η2). Suppose that η 6= 〈∅,⊤〉; hence the

function Intersect(η1, η2) adds the node η to G. Let α be the value of the counter variable

when Intersect(η1, η2) is first called. Then,

A1. Terms(η) ⊆ Terms(η1) ∩ Terms(η2).

A2. Terms(η) ⊇ {e ‖ e ∈ Terms(η1), e ∈ Terms(η2), size(e) ≤ α}.

The proof of Property 4 is by induction on sum of height of nodes η1 and η2 in G1 and

G2 respectively. Claim A1 is easy since h = F (...) only if both h1 and h2 are F (...) (Line

7), and V = V1 ∩ V2 (Line 9). The proof of claim A2 relies on bottom-up processing of

one of the SEDs, and memoization. Let e′ be one of the smallest expressions (in terms of

size) such that e′ ∈ Terms(η1) ∩ Terms(η2). If e′ is not a variable, then for any variable

y ∈ Vars(e′), the call Intersect(NodeG1(y),NodeG2(y)) has already finished. The crucial

observation now is that if size(e′) ≤ α, then the set of recursive calls to Intersect are in

1-1 correspondence with the nodes of expression e′, and e′ ∈ Terms(η).

Lemma 11 [Soundness and Completeness of Join Operation] Let G=Join(G1, G2, s).

If G |= e1 = e2, then G1 |= e1 = e2 and G2 |= e1 = e2. If G1 |= e1 = e2, G2 |= e1 = e2 and

size(e1) ≤ s, size(e2) ≤ s, then G |= e1 = e2.

The proof of Lemma 11 follows from Property 4 and definition of |=.

Verifying or Discovering Equal Program Sub-expressions

After a fixed point has been reached, the SEDs computed by the algorithm at

various program points can be used to decide equivalences of expressions at those points.

Let G be the SED computed by the algorithm at a program point π after fixed-point

computation. If G = ⊥, the program point π is unreachable. Else, the algorithm declares

expressions e1 and e2 to be equal at program point π iff G |= e1 = e2.
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Optimization

Maintaining an SED explicitly at each program point is expensive (in terms of

time and space complexity) and redundant. We can instead maintain one global SED G

for the SSA version of the program (similar to the optimization discussed in Section 3.2.1).

This requires small modifications to the Assignment, Non-det-Assignment, and the Join

operations defined earlier.

The Assignment and Non-det-Assignment operations remain essentially the same

except that they do not create a new SED. More concretely, lines 1 and 6 in the description of

the Assignment operation, while lines 1 and 5 in the description of the Non-det-Assignment

operation are removed. Also, all occurrences of G′ in those operations are replaced by G.

The Join operation involves processing all phi-assignments at the corresponding

join point π. Let xπ denote the renamed version of variable x at join point π after the SSA

conversion. For each phi-assignment xπ = φ(xπ1, xπ2) at join point π, the Join operation

involves executing Intersect(NodeG(xπ1),NodeG(xπ2)) as shown below:

Join(G,π,s′
e) =

1 for all nodes η1, η2 ∈ G do

2 memoize [η1, η2] := ⊥;

3 for each phi-assignment xπ = φ(xπ1 , xπ2) in G do

4 let 〈V, h〉 = NodeG(xπ) in

5 G := G− 〈V, h〉;

6 if V − {xπ} 6= ∅ then G := G ∪ {〈V − {xπ}, h〉};

7 for each phi-assignment xπ = φ(xπ1 , xπ2) in G in the order ≺G do

8 counter := s′
e;

9 Intersect(NodeG(xπ1),NodeG(xπ2));

The order≺G in the loop in Line 7 refers to the ordering of phi-variables xπ. We can

avoid the costly step of initializing the memoize data structure by implementing it as a hash

table rather than an array. The Intersect routine stays same as before except the definition

of V in line 9 is refined to {target(y) ‖ y ∈ V1} ∩ {target(y) ‖ y ∈ V2} instead of V1 ∩ V2.

The function target(y) returns the target variable of the phi-assignment at join point π in

which the variable y occurs; if no such phi-assignment exists, then target(y) returns y. For

example, if there is a phi-assignment yπ = φ(yπ1 , yπ2), then target(yπ1) = target(yπ2) = yπ.
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The Intersect routine can be optimized to immediately return node η if the two inputs

are the same node η.

For detecting whether a fixed point across a loop has been reached or not, there

is no need to maintain old copies of the SEDs. It follows from the proof of the fixed point

theorem (Lemma 9) that if a fixed point is not reached, then the number of independent

variables will be different. Hence, in order to detect whether a fixed point for a loop has

been reached or not, simply a count of the number of independent variables at the target

of all back-edges for that loop suffices.

3.3.3 Correctness

Theorem 12 and Theorem 13 below imply that the algorithm computes all equiva-

lences between program expressions of size at most se at each program point. This implies

that if we choose se to be the number of occurrences of the uninterpreted function symbol F

in the program, then the algorithm detects all equivalences among program sub-expressions.

Theorem 12 [Soundness Theorem] Let G be the SED computed by the algorithm at

some program point π after fixed-point computation. If G |= e1 = e2, then e1 = e2 holds at

program point π.

Theorem 12 can be easily proved by induction on the number of operations per-

formed by the algorithm using soundness of the individual operations. Soundness of the

operations performed for assignment and join nodes is stated by Lemma 10 and Lemma 11

respectively, while soundness of the operations for non-deterministic assignment and condi-

tional nodes is trivial.

Theorem 13 [Completeness Theorem] Let e1 = e2 be an equivalence that holds at a

program point π such that size(e1) ≤ se and size(e2) ≤ se. Let G be the SED computed by

the algorithm at program point π after fixed-point computation. Then, G |= e1 = e2.

The proof of Theorem 13 follows from an invariant maintained by the algorithm

at each program point.

Lemma 12 Let G be the SED computed by the algorithm at some program point π. Let

T be the set of program paths (each from procedure entry to program point π) that have been

analyzed by the algorithm immediately after computation of G. Let s be a bound on the size
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of the expressions (in terms of the number of occurrences of the function symbol F in the

DAG representation) computed by the program along any path in T . Suppose e1 = e2 holds

at program point π along all paths in T , size(e1) ≤ s′
e − s and size(e2) ≤ s′

e − s. Then,

G |= e1 = e2.

Lemma 12 can be easily proved by induction on the number of operations performed by the

algorithm using completeness of the individual operations. Completeness of the operations

performed for assignment and join nodes is stated by Lemma 10 and Lemma 11 respectively,

while completeness of the operations for non-deterministic assignment and conditionals

nodes is trivial.

Theorem 11 (the fixed point theorem) requires the algorithm to execute each node

at most ku + 1 times (assuming the standard worklist implementation [Muc00]). This

implies that the integer s (in the statement of Lemma 12) at any program point after

fixed-point computation is at most sm(ku + 1) (where sm is the maximum size of any

expression computed by the program along any acyclic path without taking any back-edge).

Hence, choosing s′
e = se + sm(ku + 1) enables the algorithm to discover equivalences among

expressions of size se. The proof of Theorem 13 now follows easily from Lemma 12.

3.3.4 Computational Complexity

We assume that the deterministic algorithm performs the optimization of main-

taining one global SED for the SSA version of the program as discussed in Section 3.3.2.

An assignment operation takes constant time. Processing each phi-assignment in a join

operation takes time O(smku), where sm is the maximum size of any expression computed

by the program along any acyclic path without taking any back-edge. It follows from The-

orem 11 that each flowchart node is processed at most ku + 1 times. Hence, the total cost

of all assignment and join operations is O(nssmk2
u). In comparison, the complexity of the

randomized algorithm presented earlier is slightly better: O(nsdmk2
u), where dm is the max-

imum depth of any expression computed by the program along any acyclic path without

taking any back-edge. However, the complexity analysis of the randomized algorithm ap-

pears to be a conservative one though, and may be the case that the randomized algorithm

has a better computational complexity of O(nsku log ns) (as described in Section 3.2.4).
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3.4 Related Work

There have been several proposed algorithms for discovering Herbrand equiva-

lences. However, all these algorithms either take exponential time, or do not discover all

equivalences among program sub-expressions (for the abstraction where program operators

are modeled as uninterpreted functions, and conditionals are treated as non-deterministic).

Kildall’s Algorithm: Kildall’s algorithm [Kil73] performs an abstract interpretation over

the lattice of sets of Herbrand equivalences. It represents the set of Herbrand equivalences

at each program point by means of a structured partition.

The join operation for two structured partitions is defined to be their intersection.

Kildall’s algorithm is complete in the sense that if it terminates, then the structured par-

tition at any program point reflects all Herbrand equivalences that are true at that point.

However, the complexity of Kildall’s algorithm is exponential. The number of elements in

a partition, and the size of each element in a partition can all be exponential in the number

of join operations performed.

Alpern, Wegman and Zadeck’s (AWZ) Algorithm: The AWZ algorithm [AWZ88]

works on the value graph representation [Muc00] of a program that has been converted to

SSA form. A value graph can be represented by a collection of nodes of the form 〈V, h〉

where V is a set of variables, and the type h is either ⊤ (indicating that the node has no

successors), F (η1, η2) or φj(η1, η2) (indicating that the node has two ordered successors η1

and η2). φj denotes the φ function associated with the jth join point in the program. Our

data structure SED can be regarded as a special form of a value graph which is acyclic and

has no φ-type nodes. The main step in the AWZ algorithm is to use congruence partitioning

to merge some nodes of the value graph.

The AWZ algorithm cannot discover all equivalences among program terms. This

is because it treats φ functions as uninterpreted. The φ functions are an abstraction of

the if-then-else operator wherein the conditional in the if-then-else expression is abstracted

away, but the two possible values of the if-then-else expression are retained. The φ functions

satisfy the axioms stated in Equation 3.6 and Equation 3.7.

Rüthing, Knoop and Steffen’s (RKS) Algorithm: Like the AWZ algorithm, the

RKS algorithm [RKS99] also works on the value graph representation of a program that
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has been converted to SSA form. It tries to capture the semantics of φ functions by applying

the following rewrite rules, which are based on Equation 3.6 and Equation 3.7, to convert

program expressions into some normal form.

〈V, φj(η, η)〉 and η → 〈V ∪ Vars(η),Type(η)〉 (3.11)

〈V, φj(〈V1, F (η1, η2)〉, 〈V2, F (η3, η4)〉)〉 → 〈V, F (〈∅, φj(η1, η3)〉, 〈∅, φj(η2, η4)〉)〉 (3.12)

Nodes on left side of the rewrite rules are replaced by the new node on right side of the

rewrite rules, and incoming edges to nodes on left side of the rewrite rules are made to point

to the new node. However, there is a precondition to applying the second rewriting rule.

Precondition: ∀ nodes η ∈ succ∗({〈V1, F (η1, η2)〉, 〈V2, F (η3, η4)〉}),Vars(η) 6= ∅

The RKS algorithm assumes that all assignments are of the form x := F (y, z) to make sure

that for all original nodes η in the value graph, Vars(η) 6= ∅. The notation succ∗(M) denotes

the transitive closure of the successor of all nodes in set M . (A node with type F (η1, η2) or

φj(η1, η2) has nodes η1 and η2 as its successors, while a node with type ⊤ has no successor.)

This precondition is necessary in arguing termination for the above system of rewrite rules,

and proving the polynomial complexity bound. The RKS algorithm alternately applies the

AWZ algorithm and the above two rewrite rules until the value graph reaches a fixed point.

Thus, the RKS algorithm discovers more equivalences than the AWZ algorithm.

The RKS algorithm cannot discover all equivalences even in acyclic programs.

This is because the above precondition can prevent two equal expressions from reaching the

same normal form. On the other hand lifting the precondition may result in the creation

of an exponential number of new nodes, and an exponential number of applications of the

rewrite rules.

The RKS algorithm has another problem, which the authors have identified. It

fails to discover all equivalences in cyclic programs, even if the precondition described above

is lifted. This is because the graph rewrite rules add a degree of pessimism to the iteration

process. While congruence partitioning is optimistic, it relies on the result of the graph

transformations, which are pessimistic since they are applied outside of the fixed-point

iteration process.
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Randomized algorithms have always been
characterized by the following dichotomy: on
one hand, they are natural and simple to
describe and understand, sometimes almost
childishly so. On the other hand, their anal-
ysis often requires deep mathematical tech-
niques, that are also invariably, strikingly
beautiful and elegant.

Devdatt P. Dubhashi, Report on a Workshop
on Randomized Algorithms.

Chapter 4

Inter-procedural Analysis

The analyses described in the previous two chapters are intra-procedural analyses,

i.e., they analyze each procedure in a program in isolation. More precise reasoning can

be done for a program using a (context-sensitive) inter-procedural analysis, which involves

analyzing all procedures in a program in presence of each other. This is because a procedure

in a program may be called at several places in that program only with some specific input

values. If something more is known about the input variables of a procedure, then it becomes

possible to say more interesting things about the behavior of the procedure, as opposed to

an intra-procedural analysis, which assumes that a procedure may be called with all possible

values for the input variables.

One way to do inter-procedural analysis is to do procedure-inlining followed by an

intra-procedural analysis. There are two potential problems with this approach. First, in

presence of recursive procedures, procedure-inlining may not be possible. Second, even if

there are no recursive procedures, procedure-inlining may result in an exponential blow-up

of the program. For example, if procedure P1 calls procedure P2 two times, which in turn

calls procedure P3 two times, then procedure inlining will result in 4 copies of procedure P3

inside procedure P1. In general, leaf procedures can be replicated an exponential number
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of times.

A more standard technique to do inter-procedural analysis is by means of com-

puting procedure summaries. Each procedure is analyzed once (or a few times in case of

recursive procedures) to build its summary. A procedure summary can be thought of as

some succinct representation of the behavior of the procedure that is also parametrized

by any information about its input variables. In general, there is no automatic recipe to

construct these procedure summaries, and abstraction specific techniques are required.

In this chapter, we describe how to efficiently extend random interpretation based

intra-procedural analyses to an inter-procedural setting by means of computing random

procedure summaries [GN05]. For this purpose we first describe a unified framework for

random interpretation that generalizes previous randomized intra-procedural analyses, and

also extends naturally to efficient inter-procedural analyses. We then discuss the two key

ideas required to extend an intra-procedural random interpreter to an inter-procedural

setting. In Section 4.3.1, we use the unified framework and the key ideas to describe a

generic inter-procedural random interpreter.

4.1 Framework for Random Interpretation

An intra-procedural random interpreter executes a program on random inputs in

a non-standard manner as described in previous chapters. It computes a state ρ at each

program point by performing a forward analysis on the program. A state is a mapping from

program variables to values v that are polynomials over the field Fp. These polynomials

may simply be elements of Fp (as in Chapter 2 for linear arithmetic analysis), vectors of

elements from Fp
1 (as in Chapter 3 for uninterpreted functions analysis), or linear functions

of the program’s input variables (as in this chapter for inter-procedural analysis).

The random interpreter copies the state before a non-deterministic conditional

node on its two branches. It computes the state after a join node by performing an affine

join of the states before the join node. For computing the state after an assignment node,

it uses the abstraction-specific SEval function as described below.

1A vector (v1, . . . , vℓ) can be represented by the polynomial
ℓP

i=1
zivi, where z1, . . . , zℓ are some fresh

variables.
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4.1.1 SEval Function

The random interpreter processes an assignment node x := e by updating the value

of variable x to the value of expression e in the state before the assignment node. Expressions

are evaluated using the Eval function, which depends on the underlying abstract domain

of the analysis. The Eval function takes an expression e and a state ρ and computes

some value v. The Eval function plays the same role as an abstract interpreter’s transfer

function for an assignment node. Eval is defined in terms of a symbolic function SEval that

translates an expression into a polynomial over the field Fp. This polynomial is linear in

program variables, and may contain random variables as well, which stand for random field

values chosen during the analysis. (The SEval function for linear arithmetic has no random

variables, while the SEval function for uninterpreted functions uses random variables.)

Eval(e, ρ) is computed by replacing program variables in SEval(e) with their values in

state ρ, replacing the random variables with the random values that have chosen for them,

and then evaluating the result over the field Fp. (The random values rj are chosen once for

the random variables yj, and the same value rj is used for all occurrences of the random

variable yj.) Following are examples of two Eval functions that we have seen in the earlier

chapters.

SEval function for Linear Arithmetic The random interpretation for linear arithmetic

is described in Chapter 2. The following language describes the expressions in this abstract

domain. Here x refers to a variable and c refers to an arithmetic constant.

e ::= x | e1 ± e2 | c× e

The SEval function for this abstraction simply translates the linear arithmetic operations to

the corresponding field operations. In essence, Eval simply evaluates the linear expression

over the field Fp.

SEval(e) = e

SEval function for Unary Uninterpreted Functions The random interpretation for

uninterpreted functions is described in Chapter 3. We show here a simpler SEval func-

tion, for the case of unary uninterpreted functions. The following language describes the

expressions in this abstract domain. Here x refers to a variable and F refers to a unary
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uninterpreted function.

e ::= x | F (e)

The SEval function for this abstraction is as follows.

SEval(x) = x

SEval(F (e)) = r1 × SEval(e) + r2

Here r1 and r2 refer to random variables, unique for each unary uninterpreted function F .

Note that in this case, SEval produces polynomials that have degree more than 1, although

still linear in the program variables.

The SEval function corresponding to the Eval function for binary uninterpreted

functions as described in Chapter 3 evaluates expressions to vectors (of polynomials). A

vector (v1, . . . , vℓ) can however be represented as the polynomial z1v1 + . . . + zℓvℓ where

z1, . . . , zℓ are fresh variables that do not occur in the program.

Properties of SEval Function

The SEval function should have the following properties. Let x be any variable

and e1 and e2 be any expressions. Then,

B1. Soundness: The SEval function should not introduce any new equivalences.

SEval(e1) = SEval(e2)⇒ e1 = e2

Note that the first equality is over polynomials, while the second equality is in the

analysis domain.

B2. Completeness: The SEval function should preserve all equivalences.

e1 = e2 ⇒ SEval(e1) = SEval(e2)

B3. Referential transparency:

SEval(e1[e2/x]) = SEval(e1)[SEval(e2)/x]

This property (along with properties B1 and B2) is needed to prove the correctness

of the action of the random interpreter for an assignment node x := e. As mentioned
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earlier, the random interpreter computes the state after an assignment node by up-

dating the value of variable x to the value of the polynomial SEval(e) in the state

before the assignment node.

B4. Linearity: The SEval function should be a polynomial that is linear in program

variables. This property is needed to prove the completeness of the random interpreter

across join nodes, where it uses the affine join operator to merge program states.

Properties B1 and B3 are necessary for proving the probabilistic soundness of the

random interpreter. Property B2 or property B4 need not be satisfied if completeness is

not an issue. This may happen when the underlying abstraction is difficult to reason about,

yet one is interested in a (probabilistically) sound and partially complete reasoning for that

abstraction. For example, the following SEval function for “bitwise or operator” (||) satisfies

all the above properties except property B2.

SEval(e1||e2) = SEval(e1) + SEval(e2)

This SEval function models commutativity and associativity of the || operator. However,

it does not model the fact that x||x = x. In Chapter 5, we will see an example of an SEval

function that satisfies all the above properties except property B4. In this chapter, we

assume that the SEval function satisfies all the properties mentioned above. However, the

results of our chapter can also be extended to prove relative completeness of the random

interpreter if the SEval function does not satisfy property B2 or property B4.

Also, note that the SEval function for linear arithmetic as described above has the

soundness property for linear arithmetic over the prime field Fp. The problem of reasoning

about linear arithmetic over rationals can be reduced to reasoning about linear arithmetic

over Fp, where p is chosen randomly. This is a randomized reduction with some error

probability, and is discussed further in Section 4.4.1.

4.2 Key Ideas

Inter-procedural random interpretation is based on the standard summary-based

approach to inter-procedural analysis. Procedure summaries are computed in the first phase,

and actual results are computed in the second phase. The real challenge is in computing

context-sensitive summaries, i.e., summaries that can be instantiated with any context to
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a = 8 4i, b = 5i 8

a = 8 4i, b = 5i 8
x = 21i 40, y = 40 21i

a = 8 4i, b = 5i 8
x = 8 3i, y = 3i 8

a = 8 4i, b = 5i 8
x = 9i 16, y = 16 9i

a = i 2, b = 2a = 0, b = i

a := 0;
b := i;

a := i – 2; 
b := 2;

x := b – a;
y := i – 2b;

assert (x + y = 0); 
assert (x = a + i);

x := 2a + b;
y := b – 2i;

True

True False

False

w1 = 5

w2 = 2

*

*

Input: i

Figure 4.1: Illustration of random symbolic interpretation for inter-procedural analysis on
the program shown in Figure 2.2. Note that the second assertion is true in the context
i = 2, and the random symbolic program state at the end of the program satisfies it in that
context.

yield the most precise behavior of the procedures under that context. A context for a

procedure refers to any relevant information regarding the values that the input variables

of that procedure can take.

In this section, we briefly explain the two main ideas behind the summary compu-

tation technique that can be used to perform a precise inter-procedural analysis using the

SEval function of a precise intra-procedural random interpreter.

4.2.1 Random Symbolic Run

Intra-procedural random interpretation involves interpreting a program using ran-

dom values for the input variables. The state at the end of the procedure can be used as a
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summary for that procedure. However, such a summary will not be context-sensitive. For

example, consider the procedure shown in Figure 2.2 (on page 13). The second assertion

at the end of the procedure is true in the context i = 2, but this conditional fact is not

captured by the random state at the end of the procedure.

Observe that in order to make the random interpretation scheme context-sensitive,

we can simply delay choosing random values for the input variables. Instead of using states

that map variables to field values, we use states that map variables to linear functions of

input variables. This allows the flexibility to replace the input variables later depending on

the context. However, we continue to choose random weights at join points and perform a

random affine join operation.

As an example, consider again the procedure from before, shown now in Figure 4.1.

Note that the random symbolic state at the end of the procedure (correctly) does not satisfy

the second assertion. However, in a context where i = 2, the state does satisfy x = a + i

since x evaluates to 2 and a to 0. This scheme of computing partly symbolic summaries is

surprisingly effective and guarantees context-sensitivity, i.e., it entails all valid equivalences

in all contexts.

4.2.2 Multiple Runs

Consider the program shown in Figure 4.2. The first assertion in procedure B is

true. However, the second assertion is false because the non-deterministic conditional in

procedureA can branch differently in the two calls to procedureA, even with the same input.

If we use the same random symbolic run for procedure A at different call sites in procedure

B, then we incorrectly conclude that the second assertion holds. This happens because use

of the same run at different call sites assumes that the non-deterministic conditionals in the

called procedure are resolved in the same manner in different calls. This problem can be

avoided if a fresh or independent run is used at each call point. By fresh run, we mean a

run computed with a fresh choice of random weights at the join points.

One approach to generate a fresh run for each call site is to compute summaries

that are parametrized by weight variables (i.e., instead of using random weights for perform-

ing the affine join operation, we use symbolic weight variables). Then, for each call site, we

can instantiate this summary with a fresh set of random weights for the weight variables.

The problem with this approach is that the symbolic coefficients of linear functions of input
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x = 5·2 7 = 3
y = 5·1 7 = 2
z = 5·1 7 = 2u = 5i 7

w = 5
u = 3u = i+1

u := i + 1; u := 3;

return u;

Procedure A

Input: i

assert (x = 3);
assert (y = z);

x := A(2);
y := A(1);
z := A(1);

Procedure B

True False
*

Figure 4.2: A program that demonstrates unsoundness of a single random symbolic run.
Note that the first assertion at the end of procedure B is true, while the second assertion
is not true since procedure A may take different branches in different runs.

variables, which are assigned to procedure variables (in states computed by the random

interpreter) may have an exponential-size representation.

Another approach to generate m fresh runs for any procedure P is to execute

m times the random interpretation scheme for procedure P , each time with a fresh set

of random weights. However, this may require computing an exponential number of runs

for other procedures. For example, consider a program in which each procedure Pi calls

procedure Pi+1 two times. To generate a run for P0, we need 2 fresh runs for P1, which are

obtained using 4 fresh runs for P2, and so on.

The approach that we use is to generate the equivalent of t fresh runs for any

procedure P from t fresh runs of each of the procedures that P calls (for some parameter

t that depends on the underlying abstraction). This approach relies on the fact that a

random affine combination (i.e., a random weighted combination with sum of the weights

being 1) of t runs of a procedure yields the equivalent of a fresh run for that procedure. For

an informal geometric intuition, note that we can obtain any number of fresh points in a

2-dimensional plane by taking independent random affine combinations of three points that

span the plane.

In Figure 4.3, we revisit the program shown in Figure 4.2 and illustrate this random

interpretation technique of using a fresh run of a procedure at each call site. Note that we
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u = [i+1,i+1] w =[5, 2] u = [3,3]

u = [5i 7,7 2i]

x = [47·2 91, 40·2 77] = [3,3]
y = [19·1 35, 7 2·1] = [ 16,5]
z = [33·1 63, 5·1 7] = [ 30, 2]

u := i + 1; u := 3;

return u;

Procedure A

Input: i

assert (x = 3);
assert (y = z);

x := A(2);
y := A(1);
z := A(1);

Procedure B

True False
*

Run 1: u = 7(5i 7,7 2i) = 47i 91
Run 10: u = 6(5i 7,7 2i) = 40i 77
Run 2: u = 3(5i 7,7 2i) = 19i 35
Run 20: u = 0(5i 7,7 2i) = 7 2i
Run 3: u = 5(5i 7,7 2i) = 33i 63
Run 30: u = 1(5i 7,7 2i) = 5i 7

Fresh Runs for Procedure A

Figure 4.3: Illustration of multiple random symbolic runs for inter-procedural analysis on the
program also shown in Figure 4.2. In this example, 2 random symbolic runs are computed
for each procedure, and are further used to generate a fresh random symbolic run for every
call to that procedure. Run j and Run j′ are used at the jth call site of procedure A while
computing the two runs for procedure B. Note that this technique is able to correctly
validate the first assertion and falsify the second one.

have chosen t = 2. The t runs of the procedure are shown in parallel by assigning a tuple

of t values to each variable in the program. Note that procedure B calls procedure A three

times. Hence, to compute 2 fresh runs for procedure B, we need to generate 6 fresh runs

for procedure A. The figure shows generation of 6 fresh runs (Runs 1,1′,2,2′,3, and 3′) from

the 2 runs for procedure A. The first call to procedure A uses the first two (Runs 1 and 1′)

of these 6 runs, and so on. Note that the resulting program states at the end of procedure

B satisfy the first assertion, but not the second assertion thereby correctly invalidating it.
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(d) Join Node

x := e;

(a) Assignment Node

Call P 0

(e) Procedure Call

x := ?

(b) Non-deterministic 
Assignment Node

(c) Non-deterministic 
Conditional Node 

*True False

S

S 2S 1

, T, d S , T, d

S , T, d S , T, d

S , T, d

1, T 1, d1 2, T 2, d 2~ ~

~

~ ~

~

~ ~

~

S 0 0, T 0, d 0~ ~

S 2S 1 1, T 1, d1 2, T 2, d 2

S 0

S 0 ~0, T 0, d 0

0, T 0, d 0

Figure 4.4: Flowchart nodes considered in inter-procedural analysis.

4.3 The Random Interpreter

We now describe the precise inter-procedural random interpretation for any ab-

straction that is equipped with an SEval function that has the properties discussed in

Section 4.1.1.

We assume that each procedure has been abstracted using the flowchart nodes

shown in Figure 4.4. A procedure call node is simply denoted by the name of the procedure

P ′ that is being called. For simplicity, we assume that the inputs and outputs of a procedure

being called are passed as global variables.

Apart from the notation established in Section 2.2, we use the following notation

related to our program model.

• ki: Maximum number of input variables for any procedure.

• ko: Maximum number of output variables for any procedure.

• npp: Maximum number of procedure call nodes in any procedure.

• np : Number of procedure call nodes.

The set of input variables of a procedure P includes the set of all global variables read by

procedure P directly as well as the set of input variables for any procedure P ′ called by
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P . Similarly for the set of output variables of a procedure P . Since we consider procedure

calls nodes in this abstraction, n = na + 2nc + np (instead of being just na + 2nc, as in

Section 2.2).

4.3.1 Basic Algorithm

The inter-procedural random interpreter performs a standard two-phase computa-

tion. The first phase, or the bottom-up phase, computes procedure summaries by starting

with leaf procedures. The second phase, or top-down phase, computes the actual results of

the analysis at each program point by using the summaries computed in the first phase. In

presence of loops in the call graph and inside procedures, both phases require fixed-point

computation, which we address in Section 4.3.3.

The random interpreter starts by choosing random elements rj ∈ Fp for any ran-

dom variables yj that are used in the SEval function. Every occurrence of variable yj is

replaced by the same random choice rj when evaluating any expression using the Eval func-

tion. We use the notation SEval′(e) to denote the polynomial obtained from SEval(e) by

replacing all occurrences of the random variables yj by the random elements rj that have

been chosen (globally) for them. The prime p is chosen to ensure that the error probability

of the random interpreter (which is a function of p among other parameters, as described

in Theorem 14) is small. A 32-bit prime is usually sufficient in practice. We now describe

the two-phase computation performed by the random interpreter.

Phase 1

A summary for a procedure P , denoted by YP , is either ⊥ (denoting that the

procedure has not yet been analyzed, or on all paths it transitively calls procedures that

have not yet been analyzed), or is a collection of t runs {YP,i}ti=1. A run of procedure P

is a mapping from output variables of procedure P to random symbolic values, which are

linear expressions in terms of the input variables of procedure P . The number of runs t

should be greater than kv + 2ki for probabilistic soundness, as predicted by our theoretical

estimates. However, experiments (discussed in Section 4.6) suggest that a smaller value of

t does not yield any error in practice.

To compute a procedure summary, the random interpreter computes a sample S at

each program point, as shown in Figure 4.4. A sample is either ⊥ or a sequence of t states. A
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state at a program point π is a mapping of program variables (visible at point π) to random

symbolic linear expressions in terms of the input variables of the enclosing procedure. We

use the notation Si to denote the ith state in sample S. The random interpreter computes

a sample S at each program point from the samples at the immediately preceding program

points, and using the summaries computed so far for the called procedures. The transfer

functions for the flowchart nodes are described below. After the random interpreter is done

interpreting a procedure, it computes the summary of that procedure by simply projecting

the sample (or the t states) at the end of the procedure to the output variables of the

procedure.

Initialization: The random interpreter starts by initializing the summaries of all proce-

dures, and the samples at all program points except at procedure entry points to ⊥. The

samples at procedure entry points are initialized by setting all input variables x to SEval′(x)

in all states.

Si(x) = SEval′(x)

Note that SEval′(x) is simply x for the abstractions of linear arithmetic and uninterpreted

functions.

Assignment Node: See Figure 4.4 (a).

If the sample S′ before the assignment node is ⊥, then the sample S after the assignment

node is defined to be ⊥. Otherwise, the random interpreter computes S by updating the

value of variable x in each state of sample S′ as follows.

Si = S′
i[x← Eval(e, S′

i)]

Non-deterministic Assignment Node: See Figure 4.4 (b).

If the sample S′ before the non-deterministic assignment node is ⊥, then the sample S after

the non-deterministic assignment node is defined to be ⊥. Else, the random interpreter

processes the assignment x :=? by transforming each state in the sample S′ by setting x to

some fresh random value.

Si = S′
i[x← v], where v = SEval′(y)[Rand()/y]

The fresh random value v is obtained from the polynomial SEval′(y) by substituting variable

y by a randomly chosen element from Fp.
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Non-deterministic Conditional Node: See Figure 4.4 (c).

The random interpreter simply copies the sample S before the conditional node on the two

branches of the conditional.

S1 = S and S2 = S

Join Node: See Figure 4.4 (d).

If any one of the samples S1 or S2 before the join node is ⊥, the random interpreter assigns

the other sample before the join node to the sample S after the join node. Otherwise, the

random interpreter selects t random weights w1, . . . , wt and computes the affine join of S1

and S2 with respect to those weights to obtain the sample S after the join node.

S = φ[w1,...,wt](S1, S2)

Procedure Call: See Figure 4.4 (e).

If the sample S′ before the procedure call is ⊥, or if the summary YP ′ is ⊥, then the sample

S after the procedure call is defined to be ⊥. Otherwise the random interpreter executes

the procedure call as follows. The random interpreter first generates t fresh random runs

Y1, . . . , Yt for procedure P ′ using the current summary (t runs) for procedure P ′. Each fresh

run Yi for procedure P ′ is generated by taking a random affine combination of the t runs

in the summary of procedure P ′. This involves choosing random weights wi,1, . . . , wi,t with

the constraint that wi,1 + · · · +wi,t = 1, and then doing the following computation. Then,

Yi(x) =
t∑

j=1

wi,j × YP ′,j(x)

The effect of a call to procedure P ′ is to update the values of the variables that

are written to by procedure P ′. The random interpreter models this effect by updating the

values of these variables using the fresh random runs Yi (computed above) as follows. Let

the input (global) variables of procedure P ′ be y1, . . . , yk. Let OP ′ denote the set of output

(global) variables of procedure P ′.

Si(x) =

{
Yi(x)[S′

i(y1)/y1, . . . , S′
i(yk)/yk] if x ∈ OP ′

S′
i(x) otherwise

Phase 2

For the second phase, the random interpreter also maintains a sample S (which is

a sequence of t states) at each program point, as in phase 1. However, unlike phase 1, the
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states in phase 2 map variables to values that do not involve input variables. The samples

are computed for each program point from the samples at the preceding program points in

the same manner as in phase 1 except for the initialization, which is done as follows:

Initialization: The random interpreter initializes the samples at all program points ex-

cept at procedure entry points to ⊥. The sample at the entry point of the Main procedure

is initialized by setting all input variables x to fresh random values in all states.

Si(x) = SEval′(x)[Rand()/x]

As before a fresh random value is obtained from the polynomial SEval′(x) by substituting

variable x by a randomly chosen element from Fp.

The sample S at the entry point of any other procedure P is obtained as a random

affine combination of all the non-⊥ samples at the call sites to P . Let these samples be

S1, . . . , Sk. Then for any input variable x,

Si(x) =
k∑

j=1

wi,j × Sj
i (x)

where wi,1, . . . , wi,k are random weights with the constraint that wi,1 + · · · + wi,k = 1, for

all 1 ≤ i ≤ t. This affine combination encodes all the relationships (among input variables

of procedure P ) that hold in all calls to procedure P .

Verifying and Discovering Equivalences

Let S be the sample computed by the random interpreter at some program point

π after fixed-point computation. If S = ⊥, then the random interpreter declares π to be

unreachable. Else, it declares two expressions e1 and e2 to be equal at program point π iff

for all states Si in the sample S, Eval(e1, Si) = Eval(e2, Si).

The process of discovering equivalences at a program point is abstraction specific.

For example, Section 2.2.1 describes how to discover linear equality relationships for the ab-

straction of linear arithmetic. Section 3.2.1 describes how to discover Herbrand equivalences

among program sub-expressions for the abstraction of uninterpreted functions.

Optimization

Maintaining a sample explicitly at each program point is expensive (in terms of

time and space complexity) and redundant. The optimization of maintaining one global
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sample for the SSA version of the program, as discussed in Section 2.2.1, applies here as well.

Under such an optimization, interpreting an assignment node or a procedure call simply

involves updating the values of the modified variables in the global sample. Interpreting

a join node involves updating the values of phi-variables at that join point in the global

sample.

4.3.2 Error Probability Analysis

In this section, we estimate the error probability of the random interpreter. We

show that the random interpreter is complete, i.e. it validates all correct equivalences (prop-

erty D4). On the other hand, we show that with high probability (over the random choices

made by the random interpreter), the random interpreter does not validate a given incorrect

equivalence (Theorem 14). We also show that if the SEval function does not involve any

random variables (e.g., SEval function for linear arithmetic), then with high probability

(over the random choices made by the random interpreter), the random interpreter vali-

dates only correct equivalences (Theorem 14). For the purpose of establishing these results,

we first state and prove some useful properties of the samples computed by the random

interpreter in phase 1 and phase 2.

Analysis of Phase 1

We first introduce some terminology. We use the term input context, or simply

context, for a procedure P to denote a mapping of input variables of procedure P to polyno-

mials that are linear in program variables. For any context C, let Abs(C) denote the set of

equivalences (involving variables that have mappings in C) in the abstract domain that are

implied by C, i.e., Abs(C) = {e1 = e2 | Eval(e1, C) = Eval(e2, C)}. For any polynomial Q,

and any context (or state) C, we use the notation Q[C] to denote the polynomial obtained

from Q by substituting all variables that have mappings in C by those mappings.

Let π be some program point in procedure P . Let T be some set of paths that

lead to π from the entry point of procedure P . We say that an equivalence e1 = e2 holds at

π along paths T in context C iff the weakest precondition of the equivalence e1 = e2 along

all paths in T belongs to the set Abs(C). We denote this by Holds(e1 = e2, T, C).

We say that a state ρ entails an equivalence e1 = e2 in context C, denoted by

ρ |=C e1 = e2, when Eval(e1, ρ)[C] = Eval(e2, ρ)[C]. We say that a sample S entails an
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equivalence e1 = e2 in context C, denoted by S |=C e1 = e2, when all states in S do so.

Let S be the sample computed by the random interpreter (in phase 1) at a program

point π in procedure P after analyzing a set of paths T . The following properties hold.

D1. Soundness (Phase 1): Suppose that the SEval function does not involve any random

variables. With high probability, in all input contexts, S entails only the equivalences

that hold at π along the paths analyzed by the random interpreter (i.e., with high

probability, for all input contexts C and all equivalences e1 = e2, ¬(Holds(e1 =

e2, T, C)) ⇒ ¬(S |=C e1 = e2)). The error probability γ1(S) (assuming that the

samples computed before computation of S satisfy property D1) is bounded above as

follows:

γ1(S) ≤ pki

(
αt−kv

1− α

)
, where α =

3dSt
p(t− kv)

We use the notation dS to refer to the number of join points and procedure calls

along any path analyzed by the random interpreter immediately after computation of

sample S. A formal definition of dS is given in Appendix C.1.

D2. Completeness (Phase 1): In all input contexts, S entails all equivalences that hold at

π along the paths analyzed by the random interpreter (i.e., for all input contexts C

and all equivalences e1 = e2, Holds(e1 = e2, T, C)⇒ S |=C e1 = e2).

For the purpose of proving property D1, we hypothetically extend the random

interpreter to compute a fully-symbolic state at each program point, i.e., a state in which

variables are mapped to polynomials in terms of the input variables and random weight

variables corresponding to join points and procedure calls (see Appendix C.1 for details). A

key part of the proof strategy is to prove that the fully-symbolic state at each point captures

exactly the set of equivalences at that point in any context along the paths analyzed by the

random interpreter. In essence, a fully-symbolic interpreter is sound and complete, even

though it might be computationally expensive. The proof of this fact is by induction on the

number of flowchart nodes analyzed by the random interpreter (Lemma 16 in Appendix C.1).

We now prove property D1 using the following two steps.

We first bound the error probability that a sample S with t states does not entail

exactly the same set of equivalences as the corresponding fully-symbolic state ρ̃ in a given

context. The following lemma specifies a bound on this error probability, which we denote

by γ′
1(S).
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Lemma 13 γ′
1(S) ≤ αt−kv

1−α , where α = 3dSt
p(t−kv) .

The proof of Lemma 13 is in Appendix C.3.

Next we observe that it is sufficient to analyze the soundness of a sample in a

smaller number of contexts (compared to the total number of all possible contexts), which

we refer to as a basic set of contexts. If a sample entails exactly the same set of equivalences

as the corresponding fully-symbolic state for all contexts in a basic set, then it has the same

property for all contexts. Let N denote the number of contexts in any smallest basic set of

contexts. The following theorem specifies a bound on N .

Lemma 14 N ≤ pki .

The proof of Lemma 14 is in Appendix C.4.

The probability that a sample S is not sound in any of the contexts is bounded

above by the probability that S is not sound in some given context multiplied by the size

of any basic set of contexts. Thus, the error probability γ1(S) mentioned in property D1 is

bounded above by γ′
1(S)×N .

The proof of property D2 is by induction on the number of flowchart nodes analyzed

by the random interpreter, and is similar to the proof of completeness of the fully-symbolic

state given in Appendix C.1.

Analysis of Phase 2

A sample S computed by the random interpreter in phase 2 at a program point π

in procedure P has the following properties.

D3. Soundness (Phase 2): Suppose that the SEval function does not involve any random

variables. With high probability, S entails only the equivalences that hold at π along

the paths analyzed by the random interpreter. The error probability γ2(S) (assuming

that the samples computed before computation of sample S satisfy property D3, and

all samples computed in phase 1 satisfy property D1) is bounded above as follows:

γ2(S) ≤
αt−kv

1− α
, where α =

3dSt
p(t− kv)

dS is as described in property D1. A formal definition of dS is given in Appendix C.1.

D4. Completeness (Phase 2): S entails all equivalences that hold at π along the paths

analyzed by the random interpreter.
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The proof of property D3 is an instantiation of the proof of Lemma 13, and follows

from it by choosing the context C to be the identity mapping. The proof of property D4 is

an instantiation of the proof of property D2, and follows from it by choosing the context C

to be the identity mapping.

Property D4 implies that the random interpreter discovers all valid equivalences.

We now use the properties D1 and D3 to prove the following theorem, which establishes a

bound on the total error probability of the random interpreter.

Theorem 14 [Probabilistic Soundness Theorem] Let H1 = 1 + kv(ki + 1) and H2 =

1+kv. Let q = nH1β and d = max{(ncp+npp)H1β, (nc+np)H2β}. Suppose that p > (3dt)2.

If SEval function does not involve any random variables, then the probability that all random

samples computed by the random interpreter satisfy only those equivalences that hold at the

corresponding program points is at least 1− 2q
1−αα

t−t0 , where α = 3dt
p(t−kv) and t0 = kv+2ki. In

general, the probability that the random interpreter does not verify a given false equivalence

e0 = e′
0 is bounded below by 1 − 2q

1−αα
t−t0 − δ

p . Here δ refers to the maximum degree

of SEval(e) for any expression e that uses a maximum of 2sH2(nH1)nH1(nH2)nH2 + s′

function symbols, where s is the maximum number of function symbols in any assignment

node, and s′ is the maximum number of function symbols in expressions e0 and e′
0.

Proof. It follows from the discussion after Theorem 15 and Theorem 16 in the next section

that the random interpreter goes around each loop at most H1β times in phase 1 and H2β

times in phase 2 for fixed-point computation. Hence, the random interpreter computes at

most nH1β samples in phase 1 and nH2β samples in phase 2. Also, note that the value of

dS in the bounds on the probabilities γ1(S) and γ2(S) (which bound the unsoundness of a

sample S) is at most (ncp + npp)H1β in phase 1 and (nc + np)H2β in phase 2. This implies

that the total error probability of the random interpreter for the case when SEval function

does not involve any random variables is bounded above by 2q
1−αα

t−t0 .

We now prove an upper bound on the probability that the random interpreter

with a general SEval function validates an incorrect equivalence. Let P0 be the original

program, and let e0 = e′
0 be some equivalence that does not hold in program P0 at some

program point π. Let P1 be the program obtained from P0 by replacing all expressions e

by SEval(e). Let e1 = SEval(e0) and e′
1 = SEval(e′

0). It follows from the properties B1,

B2 and B3 of the SEval function that the equivalence e1 = e′
1 does not hold in program P1

(at program point π).
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Let P2 be the program obtained from P1 by substituting all random variables yj in

the SEval function by the random values rj chosen by the random interpreter. Similarly, let

e2 = e1[rj/yj] and e′
2 = e′

1[rj/yj ]. We now show that the probability (over the choice of the

random values rj) that P2 does not satisfy e2 = e′
2 (at program point π) is bounded above

by δ
p . Let P ′

1 and P ′
2 be the programs without any procedure calls obtained from programs

P1 and P2 respectively using the procedure inlining technique described in Appendix C.2.

The programs P ′
1 and P ′

2 satisfy the same set of equivalences as the programs P1 and P2

respectively at the corresponding points. Each procedure in the programs P ′
1 and P ′

2 has at

most nmax = 2(nH1)nH1(nH2)nH2 nodes. Since P ′
1 does not satisfy the equivalence e1 = e′

1

(at program point π) it follows from Theorem 16 that there must be a path of length nmaxH2

(from the entry point of the procedure enclosing point π to π) along which the equivalence

e1 = e′
1 is not satisfied. Let ρ1 be the state obtained by executing the program P ′

1 along that

path. Note that e1[ρ1] 6= e′
1[ρ1]. Let ρ2 = ρ1[rj/yj ]. The degrees of the polynomials e2[ρ2]

and e′
2[ρ2] are bounded above by δ. It follows from the Schwartz and Zippel’s polynomial

identity testing theorem that the probability that e2[ρ2] = e′
2[ρ2] is at most δ

p . Hence, the

probability that P ′
2 (or equivalently P2) satisfies the equivalence e2 = e′

2 (at program point

π) is at most δ
p .

Now suppose that the program P2 does not satisfy the equivalence e2 = e′
2 (at

program point π). Observe that performing random interpretation over program P0 (using

the SEval function for the underlying abstraction) to decide the validity of the equivalence

e0 = e′
0 (at program point π) is equivalent to performing random interpretation over pro-

gram P2 (using the identity SEval function) to decide the validity of the equivalence e2 = e′
2

(at program point π). It follows from the result established for the case when SEval func-

tion does not involve any random variables that the probability that the random interpreter

validates the incorrect equivalence e2 = e′
2 in program P2 (at program point π) is at most

2q
1−αα

t−t0 . The desired result now follows from the union bound on this probability and the

probability that program P2 satisfies the equivalence e2 = e′
2 (at program point π). 2

Note that for the case when SEval function does not involve any random variables,

Theorem 14 gives a bound on the error probability for the process of discovering (all)

equivalences; while for the general case, it specifies a bound on the error probability for

verification of a (single) given equivalence 2. The theorem implies that for probabilistic
2The error probability for verification of m equivalences can be obtained by multiplying the error prob-

ability for verification of one equivalence by m.
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soundness we need to choose t to be greater than kv + 2ki. It may be possible to prove

better bounds on t for specific abstractions (e.g., we only require t > 6 for the case of unary

uninterpreted functions, as discussed in Section 4.4.2). For the case when SEval function

does not involve any random variables, p needs to be greater than (3dt)2. However, for

the general case, we need to choose p to be greater than δ, which implies that we need to

perform arithmetic with numbers that require O(log δ) bits for representation. For example,

the value of δ for the theory of unary uninterpreted functions is 2sH2(nH1)nH1(nH2)nH2 +

s′, and this implies that the arithmetic should be performed with numbers that require

O(nkv log n) bits for representation. However, we feel that this analysis is very conservative,

and experiments suggest that 32-bit primes are good enough in practice.

4.3.3 Fixed-point Computation

The notion of loop that we consider for fixed-point computation is that of a max-

imal strongly connected component (SCC). For defining SCCs in a program in an inter-

procedural setting, we consider the directed graph representation of a program that has

been referred to as supergraph in the literature [RHS95]. This directed graph representa-

tion consists of a collection of flowcharts, one for each procedure in the program, with the

addition of some new edges. For every edge to a call node, say from node η1 to call node η2

with the call being to procedure P , we add two new edges: one from node η1 to entry node

of procedure P , and the other from exit node of procedure P to node η2. Now consider the

DAG of SCCs of this directed graph representation of the program. Note that an SCC in

this DAG may contain nodes of more than one procedure 3 (in which case it contains all

nodes of those procedures).

In both phase 1 and phase 2, the random interpreter processes all SCCs in the

DAG in a top-down manner. It goes around each SCC until a fixed point is reached. In

phase 1, a sample computed by the random interpreter represents sets of equivalences, one

for each context. A fixed point is reached for an SCC in phase 1, if for all points π in the

SCC and for all contexts C (for the procedure enclosing point π), the set of equivalences at

π in context C has stabilized. In phase 2, a sample computed by the random interpreter

represents a set of equivalences; and a fixed point is reached for an SCC, if for all points π

in the SCC, the set of equivalences at π has stabilized. Let H1 and H2 be the upper bounds
3This happens when the call graph of the program contains a maximal strongly connected component of

more than one node.
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on the number of iterations required to reach a fixed point across any SCC in phase 1 and

2 respectively.

Theorem 15 [Fixed Point Theorem for Phase 1] Let ρ̃1, . . . , ρ̃m be the fully-symbolic

states computed by the random interpreter in phase 1 at some point π inside a loop in

successive iterations of that loop such that ρ̃i does not imply the same set of equivalences as

ρ̃i+1 in some context. Then, m ≤ H1, where H1 = 1 + kv(ki + 1).

Proof. We first introduce some notation. Let ρ be any state that maps variables x1, . . . , xa

to polynomials that are linear in input variables y1, . . . , yb. Let ρ(xj) =
( b∑

i=1
vi+(j−1)(b+1)yi

)
+

vj(b+1), where the polynomials vi do not involve the input variables y1, . . . , yb. We use the

notation R(ρ) to denote the vector (v1, . . . , va(b+1), 1). For any fully-symbolic state ρ̃, we use

the notation V(ρ̃) to denote the smallest vector space generated by {R(ρ̃)[vi/wi] ‖ vi ∈ Fp}

over the field Fp, where R(ρ̃)[vi/xi] denotes the vector obtained from R(ρ̃) by replacing all

weight variables wi by some choices of elements vi from Fp.

Consider the vector spaces V(ρ̃i) and V(ρ̃i+1). Note that V(ρ̃i) is included in

V(ρ̃i+1) since ρ̃i is an instantiation of ρ̃i+1. Also, note that V(ρ̃i) 6= V(ρ̃i+1) since ρ̃i does

not imply the same set of equivalences as ρ̃i+1 in some context. Hence, Rank (V(ρ̃i)) <

Rank (V(ρ̃i+1)). Note that Rank (V(ρ̃1)) ≥ 1 and Rank (V(ρ̃m)) ≤ 1 + kv(ki + 1). Hence,

m ≤ 1 + kv(ki + 1). 2

Theorem 16 [Fixed Point Theorem for Phase 2] Let ρ̃1, . . . , ρ̃m be the fully-symbolic

states computed by the random interpreter in phase 2 at some point π inside a loop in

successive iterations of that loop such that ρ̃i does not imply the same set of equivalences as

ρ̃i+1 in some context. Then, m ≤ H2, where H2 = 1 + kv.

The proof of Theorem 16 is similar to the proof of Theorem 15 and follows from

the observation that Rank(V(ρ̃m)) ≤ 1 + kv.

We have described a worst-case bound on the number of iterations required to

reach a fixed point. However, we do not know if there is an efficient way to detect a fixed

point since the random interpreter works with randomized data-structures. The random

interpreter can use the strategy of iterating around a loop (SCC) H1β times in phase 1 and

for H2β times in phase 2, where β is the number of back-edges in the loop. Note that this

guarantees that a fixed point will be reached. This is because if a fixed point is not reached,
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then the set of equivalences corresponding to at least one of the samples (computed by

the random interpreter) at the target of the back-edges must change, and it follows from

Theorem 15 and Theorem 16 that there can be at most H1 or H2 such changes at each

program point in phase 1 or phase 2 respectively.

4.3.4 Computational Complexity

We assume that the random interpreter performs the optimization of maintaining

one global state in the SSA version of the program as discussed in Section 4.3.1. Under

that optimization, a join operation reduces to processing phi-assignments at that join point.

We also assume unit cost for each arithmetic operation and that the size of polynomial

SEval(e) is linear in size of expression e. We estimate the running time of the random

interpreter for phase 1, which dominates the running time for phase 2. The cost of processing

each assignment, both phi and non-phi, is O(kit). The cost of processing a procedure

call is O(kikot2). For fixed-point computation, the random interpreter goes around each

loop at most H1β times. Assuming β to be a constant, the running time of the random

interpreter is O(nsH1kit+ npH1kikot2). It follows from Theorem 14 that for probabilistic

soundness, we need to choose t to be greater than kv + 2ki. This yields a total complexity

of O(nsk2
vk2

i + npk3
vk2

iko) for the random interpreter.

If we regard ki and ko to be constants, since they denote the size of the interface

between procedure boundaries and are supposedly small, and the number of procedure call

nodes np to be significantly smaller than the number of assignment nodes ns, then the

complexity of the random interpreter reduces to O(nsk2
v), which is linear in the size of

the program and quadratic in the maximum number of visible program variables at any

program point.

4.4 Special Cases

4.4.1 Linear Arithmetic

In this section we discuss the use of inter-procedural random interpretation to

discover linear equalities among program variables that take rational values. The basic

strategy is to discover the linear equalities among program variables over a randomly chosen

prime field Fp (rather than the infinite field of rationals) using the SEval function described
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P0(x) = { return 2x; }

Pi(x) = { y := Pi−1(x); return Pi−1(y); }

P ′
0(x) = { return 2x; }

P ′
i (x) = { y := P ′

i−1(x); return P ′
i−1(y); }

Main() = { y1 := Pm(0); y2 := P ′
m(0); assert(y1 = y2); }

Figure 4.5: A program of size O(m) for which any deterministic summary based inter-
procedural analysis requires Ω(2m) space and time for manipulating arithmetic constants
(assuming standard binary representation). The program contains 2m+3 procedures Main,
Pi and P ′

i for i ∈ {0, . . . ,m}. A randomized analysis does not have this problem.

in Section 4.1.1. This is followed by mapping back the discovered equalities to the field of

rationals using the technique described in Section 2.2.1.

The motivation for first solving the problem over a randomly chosen prime field

(as opposed to directly solving over the infinite field of rationals) comes from the need to

avoid manipulating large numbers. For example, consider the program shown in Figure 4.5.

Any summary-based approach for discovering linear equalities will essentially compute the

following summaries for procedures Pm and P ′
m:

Pm(x) = 22m
x

P ′
m(x) = 22m

x

Note that representing the arithmetic constant 22m using standard decimal notation requires

Ω(2m) digits. The problem of manipulating large numbers can be avoided by performing

computations over a small finite field Fp, where prime p is chosen randomly. However, this

results in some additional error probability, which we discuss below.

Error Probability Analysis

The error probability of the random interpreter can be decomposed into two parts.

The special case in Theorem 14 gives the error probability of the random interpreter assum-

ing that the linear equalities are to be discovered over the prime field Fp. We now estimate

the remaining error probability, which results from reducing the problem of finding linear

equalities over rationals to finding them over Fp.

First observe that the given program can be converted into an equivalent program
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(in the sense that both programs satisfy the same set of linear equalities at corresponding

points) that does not use any procedure calls, and it can be obtained using the proce-

dure inlining technique described in Appendix C.2. Each procedure in the equivalent new

program, has at most nmax = 2(nH1)nH1(nH2)nH2 nodes. Now, we can use the results

developed in Section 2.2.2 and Section 2.3 over the equivalent new program to estimate the

additional error probability. Theorem 3 and Theorem 4 stated in Section 2.2.2 state this

error probability, which is a function of the size of the set from which the prime p should be

chosen randomly. The parameter bm used in the statement of Theorem 3 and Theorem 4

can be estimated using the analysis in Section 2.3. Since each procedure in the equivalent

new program has at most nmax nodes (and hence at most nmax assignment nodes, and nmax

variables), we have bm ≤ 1 +nmax(nmax + 1)(log s+ log cm) (where s and cm are as defined

in Section 2.2.2). This implies that for probabilistic soundness the prime number p for

performing arithmetic should be chosen randomly from the set [1, pm], where pm requires

O(log nmax) = O(nkvki log n) bits for representation. However, we feel that this analysis is

conservative. Experiments discussed in Section 4.6 suggest that even 32-bit primes do not

yield any error in practice.

Computational Complexity

As discussed in Section 4.3.4, the inter-procedural random interpreter has a com-

plexity of O(nskvk2
it + npkvk2

ikot2) (assuming unit cost for each arithmetic operation). It

follows from Theorem 14 that for probabilistic soundness, we need to choose t to be greater

than kv + 2ki. However, we feel that our analysis for probabilistic soundness is conserva-

tive. Experiments discussed in Section 4.6 suggest that even t = 3 does not yield any error

in practice if we want to verify equalities (among any number of program variables), or

discover equalities between 2 program variables.

4.4.2 Uninterpreted Functions

In this section, we discuss the use of inter-procedural random interpretation for dis-

covering Herbrand equivalences among program sub-expressions that have been abstracted

using unary uninterpreted functions. This abstraction is useful for modeling fields of data-

structures and can be used to compute must-alias information.

Note that we restrict our attention to unary uninterpreted functions (instead of
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considering the more general binary uninterpreted functions). This is because in the case of

binary uninterpreted functions, expressions are mapped to vectors rather than scalars. The

size of these vectors is linearly proportional to the depth of any expression computed by the

program along any acyclic path as discussed in Chapter 3. In an inter-procedural setting,

the depth of such expressions can be exponential in the size of the program. Hence, unless

we can prove the conjecture that the size of the vectors need only be logarithmic in the size

of the program (as mentioned in Section 3.2.4), the complexity of processing each node will

be exponential in the size of the program, which is perhaps not any worst-case better than a

non-summary based inter-procedural analysis (which involves reducing the problem of inter-

procedural analysis to intra-procedural analysis by doing procedure inlining as described in

Appendix C.2). Since we are interested in polynomial-time complexity algorithms in this

dissertation, we leave out the discussion of the complexity of the inter-procedural analysis

for binary uninterpreted functions. However, the inter-procedural random interpretation

technique described in this chapter is applicable to reasoning about binary uninterpreted

functions too.

Error Probability Analysis

Since the SEval function for unary uninterpreted functions contains random vari-

ables, the general case in Theorem 14 applies, which specifies a bound on the error probabil-

ity for verification of one equivalence. The total error probability of the random interpreter

is given by the product of this error probability (for verification of one equivalence) with the

number of equivalences between program sub-expressions verified by the random interpreter.

For probabilistic soundness, Theorem 14 requires choosing t to be greater than

kv + 2ki. However, for the specific case of unary uninterpreted functions, we require t

to be only greater than 6. This is because of the following reason. Observe that any

equivalence in the abstraction of unary uninterpreted functions involves only 2 program

variables. Also, observe that the validity of any equivalence (at any program point) depends

on the relationship between at most 2 input variables of the enclosing procedure. Hence, the

proof of Theorem 14 can be specialized to the specific case of unary uninterpreted functions

by substituting kv = 2 and ki = 2, which yields the desired constraint that t need only be

greater than 6.



CHAPTER 4. INTER-PROCEDURAL ANALYSIS 101

Computational Complexity

It follows from the above discussion that for probabilistic soundness, we need to

choose t to be greater than 6. This yields a total complexity of O(nskvk2
i + npkvk2

iko) for

the random interpreter (assuming unit cost for each arithmetic operation).

4.5 Related Work

Precise inter-procedural analysis is provably harder than intra-procedural anal-

ysis [Rep96]. There is no general recipe for constructing a precise and efficient inter-

procedural analysis from just the corresponding intra-procedural analysis. The functional

approach proposed by Sharir and Pnueli [SP81] is limited to finite lattices of dataflow

facts. Sagiv, Reps and Horwitz have generalized the Sharir-Pnueli framework to build

context-sensitive analyses, using graph reachability [RHS95], even for some kind of infi-

nite domains. They successfully applied their technique to detect linear constants inter-

procedurally [SRH96]. However, their generalized framework requires appropriate dis-

tributive transfer functions as input. There seems to be no obvious way to automatically

construct context-sensitive transfer functions from just the corresponding intra-procedural

analysis. In this chapter, we have described a general procedure for lifting intra-procedural

random interpretation based analyses to perform a precise and efficient inter-procedural

analysis.

Linear Arithmetic

Recently, Muller-Olm and Seidl gave a deterministic algorithm (MOS) that dis-

covers all linear equalities in programs that have been abstracted using non-deterministic

conditionals [MOS04b]. The MOS algorithm is also based on computing summaries of pro-

cedures. However, their summaries are deterministic and consist of linearly independent

runs of the program. The program shown in Figure 4.6 illustrates the difference between

the deterministic summaries computed by MOS algorithm and the randomized summaries

computed by our algorithm. The MOS algorithm maintains the (linearly independent) real

runs of the program, and it may have to maintain as many as kv(ki + 1) runs. The runs

maintained by our algorithm are fictitious as they do not arise in any concrete execution

of the program; however they have the property that (with high probability over the ran-
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x := i1; x := i3;

Input: i , i2, i3

x := i2;

y := 4;
z := x;

y := 0;
z := 0;

{ x = i1, y = 4, z = i1 }

{ x = i2, y = 4, z = i2 }

{ x = i3, y = 4, z = i3 }

{ x = i1, y = i1, z = 5 }

{ x = i2, y = i2, z = 5 }

{ x = i3, y = i3, z = 5 }

{ x = i1, y = 0, z = 0 }

{ x = i2, y = 0, z = 0 }

{ x = i3, y = 0, z = 0 }

Few instantiations of (for random values of i’s)

{ x = 1i1 + 2i2 + (1 1 2)i3,
y = 34 + 4x + (1 3 4)0, 
z = 3x + 45 + (1 3 4)0 } 

Deterministic Summary:

Randomized Summary:

y := x;
z := 5;

*

*

Figure 4.6: Illustration of the difference between the deterministic summary computed by
MOS algorithm and the randomized summary computed by our algorithm.

dom choices made by the algorithm) they entail exactly the same set of equivalences in

all contexts as do the real runs. Our algorithm needs to maintain only a few runs. The

conservative theoretical bounds show that more than kv + 2ki runs are required, while ex-

periments suggest that even 3 runs are good enough (if we want to verify linear equalities,

or discover linear equalities between 2 program variables).

The authors have proved a complexity of O(nk8
v) for the MOS algorithm assuming

a unit cost measure for arithmetic operations. It turns out that the arithmetic constants

that arise in MOS algorithm may be large enough that Ω(2n) bits for required for rep-

resenting constants, and hence Ω(2n) time is required for performing a single arithmetic

operation. The program shown in Figure 4.5 (on page 98) illustrates such an exponential

behavior of MOS algorithm. The MOS algorithm can also use the technique of avoiding
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large arithmetic constants by performing arithmetic modulo a randomly chosen prime, as

described in Section 4.4.1. However this makes MOS a randomized algorithm; and the

complexity of our randomized algorithm remains better than that of MOS. It is not clear if

there exists a polynomial time deterministic algorithm for this problem.

Sagiv, Reps and Horwitz gave an efficient algorithm (SRH) to discover linear con-

stants inter-procedurally in a program [SRH96]. Their analysis considers only those affine

assignments whose right hand sides contain at most one occurrence of a variable. However,

our analysis is more precise as it treats all affine assignments in a precise manner, and

also it discovers all linear equalities (not just constants). In Section 4.6, we experimentally

compare the precision and the running time of our analysis with that of SRH algorithm.

The first intra-procedural analysis for discovering linear equalities was given by

Karr way back in 1976 [Kar76]. The fact that it took several years to obtain an inter-

procedural analysis for discovering all linear relationships in programs that have been ab-

stracted using linear arithmetic assignments demonstrates the complexity of inter-procedural

analysis.

Uninterpreted Functions

Recently, Müller-Olm, Seidl, and Steffen have given an algorithm to detect Her-

brand equalities in an inter-procedural setting [MOSS05]. Their algorithm is complete (i.e.,

it detects all valid Herbrand equalities) for side-effect-free procedures that have only one

return value. Their algorithm can also detect all Herbrand constants. In contrast, our

random interpretation based inter-procedural analysis detects all equivalences without any

restriction on the number of return values, or global values affected by a procedure. How-

ever, our algorithm has a polynomial time complexity bound only for unary uninterpreted

functions.

4.6 Experiments

In this dissertation, we have expanded the body of theoretical evidence that ran-

domized algorithms have certain advantages, such as simpler implementations and better

computational complexity, over deterministic ones. We now describe our experience exper-

imenting with some of these algorithms. The goals of these experiments are threefold: (1)

measure experimentally the soundness probability and its variation with certain parame-
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t p = 983 p = 65003 p = 268435399
Ex=c Ex=y Edep Ex=c Ex=y Edep Ex=c Ex=y Edep

2 1.7 0.2 95.5 0.1 0 95.5 0 0 95.5
3 0 0 64.3 0 0 3.2 0 0 0
4 0 0 0.2 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0

Ex=c : % of incorrect variable constants reported
Ex=y : % of incorrect variable equalities reported
Edep : % of incorrect dependent induction variables reported

Table 4.1: Percentage of incorrect relationships of different kinds discovered by the inter-
procedural random interpreter as a function of the number of runs t and the randomly
chosen prime p on a collection of programs, which are listed in Table 4.2. For example,
with t = 2 and p = 983, the random interpreter discovered 3501 variable constants, of
which 59 were incorrect; hence, Ex=c = 59

3501−59 × 100 ≈ 1.7%. The total number of
correct relationships discovered were 3442 variable constants, 4302 variable equalities, and
50 dependent induction variables.

ters of the algorithm, (2) measure the running time and effectiveness of the inter-procedural

version of the algorithm, and compare it to the intra-procedural version, and (3) perform a

similar comparison with a deterministic inter-procedural algorithm.

We ran all experiments on a Pentium 1.7GHz machine with 1Gb of memory. We

used a number of programs, up to 28,000 lines long, some from the SPEC95 benchmark suite,

and others from similar measurements in previous work [SRH96]. We measured running

time using enough repetitions to avoid timer resolution errors.

We have implemented the inter-procedural algorithm described in this paper, in the

context of the linear equalities domain. The probability of error grows with the complexity

of the relationships we try to find, and shrinks with the increase in number of runs and

the size of the prime number used for modular arithmetic. The last two parameters have a

direct impact on the running time. 4

We first ran the inter-procedural randomized analysis on our suite of programs,

using a variable number of runs, and prime numbers of various sizes. We consider here

equalities with constants (x=c), variable equalities (x=y), and linear induction variable de-

pendencies among variables used and modified in a loop (dep). 5 Table 4.1 shows the number
4For larger primes, the arithmetic operations cannot be performed directly with machine arithmetic.
5We found many more linear dependencies, but report only the induction variable ones because those

have a clear use in compiler optimization.
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of erroneous relationships reported in each case, as a percentage of the total relationships

found for the corresponding kind.

These results are for programs with hundreds of variables; and our analysis for

probabilistic soundness requires t > kv + 2ki, yet in practice we do not notice any errors for

t ≥ 4. Similarly, our theoretical estimates of the error probability when using small primes

are also pessimistic. With the largest prime shown in Table 4.1, we did not find any errors

if we use at least 3 runs. 6 In fact, for the problem of discovering simpler kinds of equalities

(variable constants x = c, variable equalities x = y), we do not observe any errors for t = 2.

This is in fact the setup that we used for the experiments described below that compare

the precision and cost (in terms of time) of the randomized inter-procedural analysis with

that of randomized intra-procedural analysis and deterministic inter-procedural analysis.

The first set of columns in Table 4.2 show the results of the inter-procedural

randomized analysis for a few benchmarks with more than 1000 lines of code each. The

column headings are explained in the caption. We ran the algorithm with both t = 2

and t = 3, since the smaller value is faster and sufficient for discovering equalities between

variables and constants. As expected, the running time increases linearly with t. The

noteworthy point here is the number of relationships found between the input variables of

a procedure.

In the second set of columns in Table 4.2 we show how many fewer relationships

of each kind are found by the intra-procedural randomized analysis, and how much faster

that analysis is, when compared to the inter-procedural one. The intra-procedural analysis

obviously misses all of the input relationships and consequently misses some internal rela-

tionships as well, but it is much faster. The loss of effectiveness results (when performing an

inter-procedural analysis as compared to an intra-procedural analysis) are similar to those

reported in [SRH96]. Whether the additional information generated by the inter-procedural

analysis is worth the extra implementation and compile-time cost will depend on how that

information is to be used. For compiler optimization it is likely that intra-procedural results

are good enough, but perhaps for applications such as program verification the extra cost

might be worth paying.

Finally, we compare our inter-procedural random interpretation based algorithm

with an inter-procedural deterministic algorithm. We have implemented and experimented
6With only 2 runs, we find a linear relationship between any pair of variables, as expected.
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Random Inter. Random Intra. Det. Inter.
Program Size inp x=c x=y dep T2 T3

∆
x=y

∆
x=c

∆
dep R3

∆
inp R2

go 29K 63 1700 796 6 47.3 70.4 170 260 3 107 17 1.9
ijpeg 28K 31 825 851 12 3.8 5.7 34 1 9 24 3 2.3
li 23K 53 392 2283 9 34.0 51.4 160 1764 6 756 20 1.3
gzip 8K 49 525 372 2 2.0 3.05 200 12 1 39 6 2.0
bj 2K 0 117 9 0 1.2 1.8 0 0 0 11 0 2.3
linpackc 2K 14 86 16 1 0.07 0.11 17 1 1 9 0 1.8
sim 2K 3 117 296 0 0.35 0.54 3 11 0 22 0 1.7
whets 1K 9 80 2 6 0.03 0.05 17 1 0 9 0 1.5
flops 1K 0 52 4 4 0.02 0.03 0 0 0 22 0 2.0

Random Inter.: Randomized Inter-procedural Analysis
Random Intra.: Randomized Intra-procedural Analysis
Det. Inter.: Deterministic Inter-procedural Analysis

Size: # of lines of C-code
inp: # of linear relationships among input variables at procedure entry points
x=c: # of variables equal to constant values
x=y: # of variable equalities
dep: # of dependent loop induction variables
Ti: Time (in seconds) for t = i runs
∆ k: Difference of # of relationships of kind k found by Random Inter and

given algorithm
Ri: Ratio of time with time Ti of Random Inter.

Table 4.2: Comparison of precision and efficiency between the randomized inter-
procedural, randomized intra-procedural, and deterministic inter-procedural analyses on
SPEC benchmarks.

with the SRH algorithm [SRH96], and the results are shown in the third set of columns in

Table 4.2. SRH is less precise than our algorithm, in that it searches only for equalities

with constants (x = c). It does indeed find all such equalities that we also find. In theory,

there are equalities with constants that we can find but SRH cannot, because they are

consequences of more complex linear relationships. However, the set of benchmarks that we

have looked at does not seem to have any such hard-to-find equalities. For comparison with

this algorithm, we used t = 2, which is sufficient for finding equalities of the form x = c

and x = y. However, we find a few more equalities between the input variables (∆ inp),

and numerous equalities between local variables, which SRH does not attempt to find. On

average, SRH is 1.5 to 2.3 times faster than our algorithm. Again, the cost may be justified

by the expanded set of relationships that we discover.
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A fairer comparison would have been with the MOS algorithm [MOS04b], which

is as precise as our inter-procedural randomized algorithm. However, implementing this

algorithm seems quite a bit more complicated than either of our algorithm or SRH. We also

could not obtain an implementation from anywhere else. Furthermore, we speculate that

due to the fact that MOS requires data structures whose size is O(k4
v) at every program

point, it will not fare well on the larger examples that we have tried, which have hundreds

of variables and tens of thousands of program points. Another source of bottleneck may be

the complexity of manipulating large constants that may arise during its analysis.
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Creativity is the ability to introduce order into
the randomness of nature.

Eric Hofer.

Chapter 5

Combining Program Analyses

The random interpretation scheme described in Chapter 2 reasons about the ab-

straction of linear arithmetic while the one described in Chapter 3 reasons about the ab-

straction of uninterpreted functions. It is natural to ask if we can combine the two random

interpretation schemes to reason about the combined abstraction.

We can state the problem more formally as follows. Suppose the flowchart repre-

sentation of a procedure consists of nodes of the kind shown in Figure 5.1. The random

interpretation scheme described in Chapter 2 can discover linear equalities when the ex-

pression language in the program consists of the following:

e ::= x | c | e1 ± e2 | c× e (5.1)

The random interpretation scheme described in Chapter 3 can discover Herbrand equiva-

lences when the expression language in the program consists of the following (For simplicity,

we restrict the expression language here to consist of only unary uninterpreted functions):

e ::= x | F (e) (5.2)

It is interesting to consider if there is a random interpretation scheme that can discover

equivalences between mixed expressions when the expression language in the program con-

sists of the following:

e ::= x | c | e1 ± e2 | c× e | F (e) (5.3)

We know from Section 4.1.1 that a random interpreter is parametrized by an SEval

function. If there exists an SEval function for an expression language, then there exists
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(a) Assignment Node

x := e;

T 0

T

(c) Non-deterministic 
Conditional Node 

*True False

T

T 1 T 2

(b) Non-deterministic 
Assignment Node

x := ?

T 0

T

(d) Join Node

T 2

T

T 1

Figure 5.1: Flowchart nodes considered in the combination of program analyses.

a random interpretation scheme to reason about programs with that expression language.

Hence, the question that we are asking is whether there exists an SEval function for the

expression language described above in Equation 5.3.

It is interesting to consider if we can naively combine the SEval functions for the

expressions languages for linear arithmetic and uninterpreted functions to obtain the SEval

function for the combined expression language. The SEval function for the expression

language in Equation 5.1 is simply:

SEval(e) = e

The SEval function for the expression language in Equation 5.2 is:

SEval(x) = x

SEval(F (e)) = r1 × SEval(e) + r2

A naive combination of the above two SEval functions yields the following SEval function

for the combined expression language:

SEval(x) = x

SEval(c) = c

SEval(e1 ± e2) = SEval(e1)± SEval(e2)

SEval(c× e) = c× SEval(e)

SEval(F (e)) = r1 × SEval(e) + r2

Unfortunately, such a naive combination of the two SEval functions does not satisfy the

soundness property (property B1 in Section 4.1.1, which states that an SEval function does



CHAPTER 5. COMBINING PROGRAM ANALYSES 110

not introduce any new equivalences). For example, consider the two unequal expressions

e1 = F (a+c)−F (b+c) and e2 = F (a)−F (b). The reader can easily verify that SEval(e1) =

SEval(e2).

We now present a result that implies that there cannot be any efficient SEval func-

tion for the combined expression language of linear arithmetic and uninterpreted functions.

This result is quite surprising given that there are efficient techniques for combining decision

procedures for the theories of linear arithmetic and uninterpreted functions [NO79].

5.1 Hardness of the combination

In this section, we show that the problem of verifying equivalences among program

expressions when the expression language of the program is given by Equation 5.3 (and the

flowchart representation of the program consists of the nodes shown in Figure 5.1) is NP-

hard.

Consider the program shown in Figure 5.2. The assert statement in the program

is true iff the input boolean formula ψ is unsatisfiable. Note that ψ is unsatisfiable iff at

least one of its clauses remains unsatisfiable in any truth value assignment to its variables,

or equivalently, g ∈ {0, . . . ,m − 1} in all executions of the procedure IsUnSatisfiable,

which non-deterministically sets variables in ψ to some truth value. The assert statement

in procedure Check(g,m) is true iff g ∈ {0, . . . ,m − 1}, as stated in Lemma 15. The key

idea in the proof of this lemma is that a disjunctive assertion of the form x = a∨x = b can

be encoded as the non-disjunctive assertion F (a) +F (b) = F (x) +F (a+ b−x) (which uses

expressions in the combination of linear arithmetic and uninterpreted functions).

Lemma 15 The assert statement in Check(g,m) is true iff g ∈ {0, . . . ,m− 1}.

Proof. The following properties hold for all 0 ≤ i ≤ m− 1.

E1. If 0 ≤ j ≤ i, then hi,j = hi,0.

E2. If g ∈ {0, . . . ,m− 1}, then hi = hi,g.

E3. If g 6∈ {0, . . . ,m−1}, then hi cannot be expressed as linear combination of {hi,j ‖ 0 ≤

j ≤ m− 1}.
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IsUnSatisfiable(ψ)

% Let formula ψ has k variables x1, . . . , xk

% and m clauses numbered 1 to m.

% Let variable xi occur in positive form in clauses # Ai[0], . . . , Ai[ci]

% and in negative form in clauses # Bi[0], . . . , Bi[di].

for i = 1 to m do

ei := 0; % ei represents whether clause i is satisfiable or not.

for i = 1 to k do

if (*) then % set xi to true

for j = 0 to ci do

eAi[j] := 1;

else % set xi to false

for j = 0 to di do

eBi[j] := 1;

g := e1 + e2 + . . .+ em; % Count how many clauses have been satisfied.

Check(g,m);

Check(g,m)

% This procedure checks whether g ∈ {0, . . . ,m− 1}.

h0 := F (g);

for j = 0 to m− 1 do

h0,j := F (j);

for i = 1 to m− 1 do

si−1 := hi−1,0 + hi−1,i;

hi := F (hi−1) + F (si−1 − hi−1);

for j = 0 to m− 1 do

hi,j := F (hi−1,j) + F (si−1 − hi−1,j);

Assert(hm−1 = hm−1,0);

Figure 5.2: A program that illustrates the NP-hardness of reasoning about assertions when
the expression language uses combination of linear arithmetic and uninterpreted functions.
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The above properties can be proved easily by induction on i. If g ∈ {0, . . . ,m − 1}, then

the assert statement is validated because:

hm−1 = hm−1,g (follows from property E2)

= hm−1,0 (follows from property E1)

If g 6∈ {0, . . . ,m− 1}, then it follows from property E3 that the assert statement is invali-

dated. 2

Lemma 15 implies the following theorem.

Theorem 17 The assert statement in procedure IsUnSatisfiable(ψ) is true iff the input

boolean formula ψ is unsatisfiable.

Note that the two procedures IsUnSatisfiable and Check can be reduced to one

procedure whose flowchart representation consists of only the nodes shown in Figure 5.1.

(The program uses procedure calls and loops with deterministic predicates only for exposi-

tory purposes.) This can be done by unrolling the loops and inlining procedure Check inside

procedure IsUnSatisfiable. The size of the resulting procedure is polynomial in the size

of the input boolean formula ψ.

5.2 Heuristic

In light of the hardness result in the previous section, we now discuss some heuris-

tics to efficiently reason about the combined abstraction of linear arithmetic and unary

uninterpreted functions. The techniques presented in this section can be used to reason

about the combination of any two abstractions.

Note that the naive combination of the SEval functions for the individual expres-

sion languages is unsound. This is because the natural linear interpretation of linear arith-

metic operators clashes with the random linear interpretation given to the uninterpreted

functions. One way to resolve the above problem is to hash the value of an uninterpreted

function term before being used in an arithmetic expression and vice versa. Such a hashing

loses some information and prevents detection of some equal expressions, but it prevents

the unintended interaction between the chosen linear interpretation of the uninterpreted

function and the linear arithmetic operators. We first describe how to compute a mapping
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T at each program point to keep track of the top-level operators used in computing the

values of different variables. We then describe a SEval function for the combination of

linear arithmetic and unary uninterpreted functions.

Top-level Operators

The mapping T specifies for each variable x, the kind of operator used in obtaining

the value held by x. T (x) is one of the following 4 values: ⊥, la, uf, and ⊤. la and

uf denote that the operator last used in obtaining the value for variable x was a linear

arithmetic operator or an uninterpreted function respectively. ⊥ denotes undefined while

⊤ denotes uncertainty. We compute the mapping T at each program point by performing a

forward analysis on the flowchart nodes. The mapping T is updated for different flowchart

nodes as described below, until a fixed point is reached (which requires a maximum of 3

iterations across any loop). Note that after a fixed point is reached, T (x) 6= ⊥ for any

variable x and mapping T at any program point.

Initialization: The mapping T at all program points except procedure entry is initialized

to map every variable to ⊥. At procedure entry, the mapping T is initialized to map every

variable to ⊤.

Assignment Node: See Figure 5.1 (a).

The mapping T after the assignment node x := e is obtained from the mapping T ′ before

the assignment node as follows:

T = T ′[x← u]

where

u =






la if e is F (e1)

uf if e is e1 ± e2 or c

T ′[y] if e is y

Non-deterministic Assignment Node: See Figure 5.1 (b).

The mapping T after the assignment node is obtained from the mapping T ′ before the

assignment node as follows:

T = T ′[x← ⊤]
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Non-deterministic Conditional Node: See Figure 5.1 (c).

The mappings T 1 and T 2 on the two branches of the conditional node are simply copies of

the mapping T before the conditional node.

T 1 = T 2 = T

Join Node: See Figure 5.1 (d).

The mapping T after the join node assigns to each variable x, the Join of the values assigned

to x by the mappings T 1 and T 2 before the join node.

T (x) = Join(T 1(x), T 2(x))

The function Join is defined as follows:

Join ⊥ la uf ⊤
⊥ ⊥ la uf ⊤
la la la ⊤ ⊤
uf uf ⊤ uf ⊤
⊤ ⊤ ⊤ ⊤ ⊤

The SEval function

We propose the following SEval function for the random interpreter for combina-

tion of linear arithmetic and uninterpreted functions:

SEval(x) = x

SEval(e) =

{
SEvalla(e) if e is e1 ± e2 or c

SEvaluf(e) if e is F (e1)

The function SEvalla uses the SEval function for linear arithmetic to interpret the

linear arithmetic part of the expressions. For the sub-expressions that use uninterpreted

function at the top level, it hashes the result returned by its counterpart SEvaluf.

SEvalla(e1 ± e2) = SEvalla(e1)± SEvalla(e2)

SEvalla(c× e) = c× SEvalla(e)

SEvalla(F (e1, e2)) = Hashla(SEvaluf(F (e1, e2)))

SEvalla(x) = HashIfuf(x)
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The function SEvaluf is similar to SEvalla with its behavior swapped for the sub-

expressions that use linear arithmetic and those that use uninterpreted function as the

top-level operator.

SEvaluf(F (e)) = r1 × SEvaluf(e) + r2

SEvaluf(e1 ± e2) = Hashuf(SEvalla(e1 ± e2))

SEvaluf(c× e) = Hashuf(SEvalla(c× e))

SEvaluf(x) = HashIfla(x)

Note that the symbolic expressions defined by SEval above uses new operations

Hashla, Hashuf, HashIfla, and HashIfuf apart from the regular addition and multiplication

operations. The semantics of these new operations is as follows. For a given state ρ and a

mapping T (x), the Hashla and Hashuf functions simply hash the value of their arguments

(i.e., they map value of their argument to a random integer from Fp) while the functions

HashIfla and HashIfuf either return their argument or its hash depending upon the value

of T (x):

HashIfla(x) =

{
x if T (x) = uf

Hashla(x) if T (x) = la or ⊤

HashIfuf(x) =

{
x if T (x) = la

Hashuf(x) if T (x) = uf or ⊤

The SEval function defined above is sound (and hence the random interpretation

scheme based on it is probabilistically sound). For example, consider the distinct expressions

e1 = F (a+ c)−F (b+ c) and e2 = F (a)−F (b) introduced earlier in the chapter. Note that

under the mapping T (a) = T (b) = T (c) = la, SEval(e1) = Hashuf(r1Hashla(a+ c) + r2)−

Hashuf(r1Hashla(b+c)+r2) and SEval(e2) = Hashuf(r1Hashla(a)+r2)−Hashuf(r1Hashla(b)+

r2) and hence SEval(e1) 6= SEval(e2). Similarly, it can be verified that under any mapping

T , SEval(e1) 6= SEval(e2).

The SEval function defined above is not complete, i.e., it does not map equal

expressions to equal values. For example, consider the two equal expressions e1 = F (1+a−1)

and e2 = F (a). Note that SEval(e1) 6= SEval(e2) since under the mapping T (a) = uf,

SEval(e1) = r1Hashla(1 + Hashuf(a) − 1) + r2, while SEval(e2) = r1a + r2. The precision
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of the SEval function can be increased by ensuring that Hashuf and Hashla hash their

arguments under the following constraint (where id denotes the identity function).

Hashuf ◦ Hashla = id

Hashla ◦ Hashuf = id

The effect of the above constraint is to unhash a (seemingly) arithmetic value that is

equal to an uninterpreted function value, when it is used inside an uninterpreted func-

tion term, and vice versa. This modification makes the SEval function complete, i.e., it

maps equal expressions to equal values (and hence the random interpretation scheme based

on it can discover all equal expressions in a straight-line program). For example, note that

SEval(e1) = SEval(e2) = r1a + r2, for e1 = F (1 + a − 1) and e2 = F (a) under the map-

ping T (a) = uf. However, since the SEval function is not linear (which violates property

B4 in Section 4.1.1), the random interpretation scheme based on it remains incomplete for

discovering equivalences in a program in presence of join points. This is not unexpected

in view of the hardness result in Section 5.1, which implies that any polynomial time (and

probabilistically sound) random interpretation for the combination of linear arithmetic and

uninterpreted functions will be incomplete (unless RP=NP).
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The intriguing possibility that axioms of ran-
domness may constitute a useful fundamental
source of mathematical truth independent of,
but supplementary to, the standard axiomatic
structure of mathematics suggests that prob-
abilistic algorithms ought to be sought vigor-
ously.

Jacob Schwartz, Fast probabilistic algorithms
for verification of polynomial identities.

Chapter 6

Conclusion

A sound and complete program analysis is undecidable [Lan92]. A simple alter-

native is random testing, which is complete but unsound, in the sense that it cannot prove

absence of bugs. At the other extreme, we have sound abstract interpretation, wherein

we pay a price for the hardness of program analysis in terms of having an incomplete (i.e.,

conservative) analysis, or by having algorithms that are complicated and have long running-

time. In this dissertation, we have described a new probabilistically sound program analysis

technique called random interpretation, which can be simpler, more efficient, and more com-

plete than its deterministic counterparts, at the price of degrading soundness from absolute

certainty to guarantee with arbitrarily high probability.

Random interpretation can be regarded as a randomized version of abstract inter-

pretation that uses random data-structures to represent invariants at each program point

and randomized algorithms as its transfer functions. For example, in case of linear arith-

metic, the subspace represented by linear equalities at each program point is represented by

a few states chosen randomly from that subspace and the (randomized) affine join operation

for performing join is more efficient than the traditional symbolic join operation. In case of

uninterpreted functions, the Herbrand equivalences at each program point are represented

by assigning hash values (which are random vectors) to different expressions such that (with
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high probability) two expressions have the same hash value iff they are equivalent.

Benefits of Random Interpretation

Randomization helps in making algorithms more efficient and precise at the cost

of probabilistic soundness. This popular theme has been exploited earlier in several areas of

computer science. In this dissertation, we have obtained similar benefits by applying ran-

domization to program analysis problems. All the random interpretation based algorithms

presented in this dissertation are more efficient than their deterministic counterparts, al-

beit at the cost of having a small error probability. However, this error probability can be

made infinitesimally small by controlling some parameters of the algorithms so that for all

practical purposes this error probability does not matter at all.

Another notable feature of random interpretation based algorithms is the simplicity

of their data-structures and the operations that they perform on those data-structures. This

is especially evident in the algorithms described in Chapter 2 and Chapter 3, where the data-

structures maintained by the algorithm simply consists of mapping from program variables

to integers, or tuple of integers.

An interesting aspect about randomization is that it inspires ideas for deterministic

algorithms. We have described the first polynomial-time deterministic algorithm for the

problem of global value numbering over the abstraction of uninterpreted functions and

non-deterministic conditionals. The inspiration to develop a polynomial-time deterministic

algorithm actually came after developing the randomized algorithm for this problem. We

used several observations that were made while developing the randomized algorithm.

Proof Techniques for Random Interpretation

The most challenging aspect in this line of work has been proof of correctness (in

particular, the proof of probabilistic soundness) of the algorithms. In each case, our intu-

ition suggested that the probability of unsound results is extremely small, and experiments

did not reveal any unsoundness. However, proving an upper bound for the probability of

unsoundness was an extremely challenging task, and most often we had to settle with con-

servative bounds. One of the reasons for this difficulty was the lack of any proof techniques

for proving correctness of randomized program analyses, simply because there were no such
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analyses known before. In the process of proving correctness of our algorithms, we have

actually developed some new proof techniques, which might be useful for future random

interpretation based program analyses.

The correctness proofs of analyses for the abstractions of linear arithmetic and

uninterpreted functions share the theme of discovering an abstract interpreter that is as

precise as the corresponding random interpreter, and then showing that the random inter-

preter simulates the actions of the abstract interpreter with high probability. The abstract

interpreter, of course, is not as efficient as the random interpreter. For the linear arithmetic

case, we show by induction that the error probability (the probability that the random

interpreter deviates from the abstract interpreter) increases a tiny bit at each step, but

still remains small at the end. For the uninterpreted functions case, we construct a sym-

bolic version of the random interpreter and show that it simulates the abstract interpreter

exactly. We then show that the random interpreter computes a random instantiation of

the polynomials computed by the symbolic random interpreter, and the error probability

is obtained by using the error bounds for the Schwartz and Zippel’s polynomial identity

testing algorithm.

The correctness proof of the inter-procedural analysis relies on constructing a fully-

symbolic random interpreter whose correctness is not difficult to prove. We then prove by

induction that the random interpreter computes exactly the same set of equivalences as the

fully-symbolic random interpreter. This part is quite involved and requires developing some

new concepts.

Scope of Random Interpretation

There appear to be two kinds of algorithmic challenges in program analysis. One

of them involves developing analyses to reason about new abstractions, e.g., linear arith-

metic, uninterpreted functions. The other kind of challenges involve developing techniques

to improve the precision of given analyses. For example, lifting an intra-procedural analysis

to inter-procedural setting, or combining different program analyses. Random Interpreta-

tion seems to be suited for addressing both kinds of challenges. Chapter 2 and Chapter 3

describe state-of-the-art algorithms, which are based on random interpretation, to reason

about the abstractions of linear arithmetic and uninterpreted functions. Chapter 4 de-

scribes techniques to extend intra-procedural analyses to perform a precise inter-procedural
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reasoning, while Chapter 5 describes how to combine program analyses to do a more precise

reasoning.

Combining randomization with symbolic algorithms can be quite a powerful tech-

nique. This is reflected in the symbolic random interpretation technique described in Chap-

ter 4. Contrast this with the random interpretation algorithms described in Chapter 2

and Chapter 3, which resemble random testing procedures, from which they inherit triv-

ial data structures and low complexity. The algorithms described in Chapter 4 start to

mix randomization with symbolic analysis. The data structures become somewhat more

involved, essentially consisting of random instances of otherwise symbolic data structures.

Even the implementation of the algorithms starts to resemble that of symbolic deterministic

algorithms. This change of style reflects our belief that the true future of randomization

in program analysis is not in the form of a world parallel to traditional symbolic analysis

algorithms, but in an organic mixture that exploits the benefits of both worlds.

Program analysis is provably hard, and we have all learned not to expect perfect

results. However, this attitude has manifested itself mostly in a large number of static

analysis approaches in which completeness is sacrificed and false positives are accepted as

a fact of life, while soundness remains the sine qua non of program analysis. The results

of this dissertation show that it might be profitable to relax this strict view of soundness,

and trade off extremely small amount of soundness in return for other advantages such

as better computational complexity, simplicity, or even more precise results. When we

observe that in the grand scheme of things, program analyses are used to produce software

that interacts with potentially buggy libraries running on fallible hardware, we realize that

maybe a minuscule probability of unsoundness in the analysis is tolerable after all.
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Appendix A

Linear Arithmetic

We now prove the completeness theorem and soundness lemma stated in Sec-

tion 2.2. Both the random interpreter and the abstract interpreter perform a forward

analysis in the sense that the outputs of a flowchart node are determined by the inputs of

that node. The proofs are by induction on the number of flowchart nodes analyzed by the

interpreters. For the inductive case of the proof, we prove that the required property holds

for the outputs of a node given that it holds for the inputs of that node. For the scenario

when at least one of the inputs of a node is ⊥ (undefined), the proof is trivial. Hence, we

prove the results assuming that all inputs to any node are non-⊥.

A.1 Proof of Completeness (Theorem 1)

The proof is by induction on the number of nodes analyzed by the interpreters.

For the base case, we have U = ∅. Hence, if U ⇒ g = 0, then it must be the case that g

is identically equal to the 0 expression, and hence S |= g = 0. For the inductive case, the

following scenarios arise.

Assignment Node: See Figure 2.6 (a).

Consider the expression g′ = g[e/x]. Since U ⇒ g = 0, U ′ ⇒ g′ = 0. It follows from the

induction hypothesis on U ′ and S′ that S′ |= g′ = 0. Hence, S |= g = 0.

Non-deterministic Assignment Node: See Figure 2.6 (b).

Since U ⇒ g = 0, it must be the case that the coefficient of x in expression g is 0, as the
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set of linear equalities U does not involve any occurrence of variable x. Hence, U ′ ⇒ g = 0.

It follows from the induction hypothesis on U ′ and S′ that S′ |= g = 0. Hence, S |= g = 0.

Conditional Node: See Figure 2.6 (c).

We prove that (a) S1 |= g = 0, and (b) S2 |= g = 0. Consider the following three

possibilities.

• U ⇒ e = 0.

It follows from the induction hypothesis on U and S that S |= e = 0. By definition of

the abstract interpreter, U1 = U and U2 = ⊥. Similarly, S1 = S and S2 = ⊥.

(a) Since U1 ⇒ g = 0, we have that U ⇒ g = 0. It follows from the induction

hypothesis on U and S that S |= g = 0. Thus, S1 |= g = 0.

(b) The proof obligation for S2 is trivial.

• U ⇒ e− c = 0 for some non-zero constant c.

It follows from the induction hypothesis on U and S that S |= e−c = 0. By definition,

U1 = ⊥, U2 = U , S1 = ⊥ and S2 = S.

(a) Since U2 ⇒ g = 0, we have that U ⇒ g = 0. It follows from the induction

hypothesis on U and S that S |= g = 0. Thus, S2 |= g = 0.

(b) The proof obligation for S1 is trivial.

• U 6⇒ e− c = 0 for any constant c.

By definition, U1 = U ∪ {e = 0}, U2 = U , S1 = Adjust(S, e), and S2 = S.

(a) Since U1 |= g = 0, there exists an expression g′ such that U ⇒ g′ = 0 and

g = g′ + λe for some constant λ. It follows from induction hypothesis on U and S

that S |= g′ = 0. It follows from Lemma 3 that S1 |= g′ = 0 and S1 |= e = 0. Hence,

S1 |= g′ + λe = 0.

(b) Since U2 ⇒ g = 0, we have that U ⇒ g = 0. It follows from induction hypothesis

on U and S that S |= g = 0. Thus, S2 |= g = 0.

Non-deterministic Conditional Node: See Figure 2.6 (d).

This case is trivial since U1 = U2 = U and S1 = S2 = S.

Join Node: See Figure 2.6 (e).

Since U ⇒ g = 0, it follows from definition of the abstract interpreter that U1 ⇒ g = 0
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and U2 ⇒ g = 0. By induction hypothesis on U1 and S1 and on U2 and S2, we have that

S1 |= g = 0 and S2 |= g = 0. It now follows from Lemma 1 that S |= g = 0.

A.2 Proof of Soundness (Lemma 5)

The proof is by induction on the number of flowchart nodes analyzed by the

interpreters. For the base case, we need to show the following since q = 0.

Pr(S̃ |= g = 0) ≤
(

1
p

)ℓ

Note that U = ∅, and S is obtained by choosing random values for all variables in all of

its states. Since U 6⇒p g = 0, g is not identically equal to 0. The probability that some

particular state in sample S satisfies the non-trivial linear equality g = 0 is at most 1
p .

Thus, the probability that some particular ℓ states from sample S satisfy the non-trivial

linear equality g = 0 is at most
(

1
p

)ℓ
. For the inductive case, following scenarios arise.

Assignment Node: See Figure 2.6 (a).

Consider the expression g′ = g[e/x]. Since U 6⇒p g = 0, U ′ 6⇒p g′ = 0. Also, note that

Si |= g = 0 iff S′
i |= g′ = 0. Let S̃ be some subset of ℓ states of sample S. Let S̃′ be the

corresponding subset of sample S′. Let q and q′ be the maximum number of adjust and join

operations performed by the random interpreter on any path before computing samples S

and S′ respectively. Note that q′ = q and event AS′ is same as event AS . Hence,

Pr(S̃ |= g = 0 ‖ AS) = Pr(S̃′ |= g′ = 0 ‖ AS′)

≤
(
q′ + 1
p

)ℓ
(from induction hypothesis on S′)

Non-deterministic Assignment Node: See Figure 2.6 (b).

Consider the following two cases:

• The coefficient of variable x in expression g is 0.

Since U 6⇒p g = 0, U ′ 6⇒p g = 0. Also, note that Si |= g = 0 iff S′
i |= g = 0. The

result now follows easily from the induction hypothesis on U ′ and S′.

• The coefficient of variable x in expression g is not 0.

Let g = g′ + λx such that g′ does not involve any occurrence of variable x. Note that



APPENDIX A. LINEAR ARITHMETIC 129

λ 6= 0. Let S̃ = {Sσ(1), . . . , Sσ(ℓ)} be some subset of ℓ states of sample S. Then,

Pr
(
S̃ |= g = 0 ‖ AS

)
= Pr

( ℓ∧

i=1

Sσ(i) |= g = 0 ‖ AS

)

= Pr

( ℓ∧

i=1

Eval(g′ + λx, Sσ(i)) = 0 ‖ AS

)

= Pr

( ℓ∧

i=1

Rand() =
−Eval(g′, S′

σ(i))

λ
‖ AS

)

=
ℓ∧

i=1

Pr

(

Rand() =
−Eval(g′, S′

σ(i))

λ

)

=
(

1
p

)ℓ

≤
(
q + 1
p

)ℓ

Conditional Node: See Figure 2.6 (c).

Let S̃1 and S̃2 be some subsets of ℓ states of samples S1 and S2 respectively. Let q, q1 and

q2 be the maximum number of adjust and join operations performed by the random inter-

preter before computing samples S, S1, and S2 respectively on any path (from procedure

entry to the corresponding program points). We prove that:

(a) Pr(S̃1 |= g = 0 ‖ AS1) ≤
(

q1+1
p

)ℓ

(b) Pr(S̃2 |= g = 0 ‖ AS2) ≤
(

q2+1
p

)ℓ

We first prove (b). Since U2 6|= g = 0, we have that U2 6= ⊥. This implies that

U 6⇒p e = 0 and U2 = U . If the sample S is sound, then S 6⇒ e = 0, and hence S2 = S.

The result now follows trivially from the induction hypothesis on U and S.

We now prove (a). Since U1 6|= g = 0, we have that U1 6= ⊥. This implies that

U 6⇒p e = c for any non-zero constant c. Suppose that the sample S is sound. Then,

S 6|= e = c for any non-zero constant c. If S |= e = 0, then S1 = S, q1 = q, U1 = U , and

the result follows easily from the induction hypothesis on U and S. We now consider the

case when S 6|= e = 0. In that case S1 = Adjust(S, e), q1 = q + 1, and U1 = U ∪ {e = 0}.

Let S̃ be the subset of ℓ states of sample S corresponding to the subset S̃1 of S1, i.e.,

S̃ = {Si ‖ S1
i ∈ S̃

1}. Let S̃′ = S̃ ∪ {S1
j1
, S1

j2
}, where j1 and j2 are as defined in the Adjust

operation. Let B denote the event that Eval(e, Sj1) 6= Eval(e, Sj2). Let G be the event that
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Sj1 |= g + ce = 0 ∧ Sj2 |= g + ce = 0 for any constant c ∈ Fp.

We first consider the case when S̃1 does not include S1
j1

and S1
j2

.

Pr(S̃1 |= g = 0 ‖ AS1)

≤
∑

c∈Fp

Pr(S̃ |= g + ce = 0 ∧ ρ0 |= g + ce = 0 ‖ AS1 ∧ B) (follows from Lemma 4)

=
∑

c∈Fp

Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B)× Pr(ρ0 |= g + ce = 0 ‖ S̃ |= g + ce = 0 ∧ AS1 ∧ B)

≤
∑

c∈Fp

Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B)× (Pr(G ‖ S̃ |= g + ce = 0 ∧ AS1 ∧ B)

+ Pr(ρ0 |= g + ce = 0 ‖ ¬G ∧ S̃ |= g + ce = 0 ∧ AS1 ∧ B))

=
∑

c∈Fp

(Pr(S̃′ |= g + ce = 0 ‖ AS1 ∧ B)

+ Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B)× Pr(ρ0 |= g + ce = 0 ‖ ¬G))

≤
∑

c∈Fp

(Pr(S̃′ |= g + ce = 0 ‖ AS1 ∧ B) + Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B)×
1

p− (t+ 1)
) (A.1)

We now lower bound Pr(S̃′ |= g + ce = 0 ‖ AS1 ∧ B) and Pr(S̃ |= g + ce =

0 ‖ AS1 ∧ B). Let A denote the event that sample S is sound.

Pr(S̃′ |= g + ce = 0 ‖ AS1 ∧ B) = Pr(S̃′ |= g + ce = 0 ‖ AS ∧ A ∧ B)

=
Pr(S̃′ |= g + ce = 0 ∧ AS ∧ A ∧ B)

Pr(AS ∧ A ∧ B)

≤
Pr(S̃′ |= g + ce = 0 ∧ AS)

Pr(AS ∧ A ∧ B)

=
Pr(S̃′ |= g + ce = 0 ∧ AS)

Pr(AS)
×

Pr(AS)
Pr(AS ∧ A ∧ B)

=
Pr(S̃′ |= g + ce = 0 ‖ AS)

Pr(A ∧ B ‖ AS)
(A.2)

Similarly,

Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B) ≤
Pr(S̃ |= g + ce = 0 ‖ AS)

Pr(A ∧ B ‖ AS)
(A.3)
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We now lower bound Pr(A ∧ B ‖ AS). Note that

Pr(¬A ‖ AS) ≤
∑

g′ s.t. U 6⇒pg′=0

Pr(S |= g′ = 0 ‖ AS)

≤
∑

g′ s.t. U 6⇒pg′=0

(
q + 1
p

)t
(from induction hypothesis on S)

≤
pk+1 − p
p− 1

×
(
q + 1
p

)t

≤
1
p2 (assuming t ≥ 3k/2 + 3 and p ≥ (q + 1)3 + 1) (A.4)

Also, note that

Pr(¬B ‖ AS) ≤
∑

c′∈Fp

Pr(Sj1 |= e = c′ ∧ Sj2 |= e = c′ ‖ AS)

≤
∑

c′∈Fp

(
q + 1
p

)2
(from induction hypothesis on S)

= p×
(
q + 1
p

)2
=

(q + 1)2

p
(A.5)

Thus,

Pr(A ∧ B ‖ AS) = 1− Pr(¬A ∨ ¬B ‖ AS)

≥ 1− Pr(¬A ‖ AS)− Pr(¬B ‖ AS)

≥ 1−
1
p2 −

(q + 1)2

p
(from Eq. A.4 and A.5)

=
p−

(
1
p + (q + 1)2

)

p
(A.6)

Using the induction hypothesis on S and Eq. A.6 in Eq. A.2 and A.3, we obtain bounds

on Pr(S̃′ |= g + ce = 0 ‖ AS1 ∧ B) and Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B) as follows:

Pr(S̃′ |= g + ce = 0 ‖ AS1 ∧ B) ≤
(
q + 1
p

)ℓ+2
×

p

p−
(

1
p + (q + 1)2

) (A.7)

Pr(S̃ |= g + ce = 0 ‖ AS1 ∧ B) ≤
(
q + 1
p

)ℓ
×

p

p−
(

1
p + (q + 1)2

) (A.8)
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Using Eq. A.7 and A.8 in Eq. A.1, we obtain:

Pr(S̃1 |= g = 0 ‖ AS1)

≤
∑

c∈Fp

(
q + 1
p

)ℓ
×

p

p−
(

1
p + (q + 1)2

) ×

((
q + 1
p

)2
+

1
p− (t+ 1)

)

= p×
(
q + 1
p

)ℓ
×

p

p−
(

1
p + (q + 1)2

) ×

((
q + 1
p

)2
+

1
p− (t+ 1)

)

=
(
q + 1
p

)ℓ
×

p

p−
(

1
p + (q + 1)2

) ×
(

(q + 1)2

p
+

p
p− (t+ 1)

)

≤
(
q + 1
p

)ℓ
×

p

p−
(

1
p + (q + 1)2

) ×
(

(q + 1)2 + p
p− (t+ 1)

)

≤
(
q + 1
p

)ℓ
×

p

p−
(

1
p + (q + 1)2

) ×
p

p− ((q + 1)2 + t+ 1)

≤
(
q + 1
p

)ℓ
×

p

p−
(

1
p + 2(q + 1)2 + t+ 1

)

≤
(
q + 2
p

)ℓ
(assuming p ≥ (q + 2)(2(q + 1)2 + t+ 2))

=
(
q1 + 1
p

)ℓ
(A.9)

We now consider the case when S̃1 includes S1
j1

or S2
j2

. Let S̃1,1 = S̃1−{S1
j1
, S1

j2
}.

Let S̃1,2 = S̃1 − S̃1,1. The states in S̃1,2 are spread u.a.r. in the subspace defined by the

states in S̃1. If sample S is sound, then it follows from Lemma 4 that sample S1 is sound,

and hence S1 6|= g = 0. Thus, we have

Pr(S̃1,2 |= g = 0 ‖ ˜S1,1 |= g = 0 ∧ AS1) ≤
(

1
p

)|S̃1,2|
(A.10)

Hence,
Pr(S̃1 |= g = 0 ‖ AS1)

= Pr(S̃1,1 |= g = 0 ∧ S̃1,2 |= g = 0 ‖ AS1)

= Pr(S̃1,1 |= g = 0 ‖ AS1)× Pr(S̃1,2 |= g = 0 ‖ ˜S1,1 |= g = 0 ∧AS1)

≤
(
q1 + 1
p

)|S̃1,1|
×

(
1
p

)|S̃1,2|
(from Eq. A.9 and A.10)

≤
(
q1 + 1
p

)|S̃1,1|+|S̃1,2|
=

(
q1 + 1
p

)ℓ
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Non-deterministic Conditional Node: See Figure 2.6 (d).

This case is trivial since U1 = U2 = U and S1 = S2 = S.

Join Node: See Figure 2.6 (e).

Let q1 and q2 be the maximum number of adjust and join operations performed by the

random interpreter before computing samples S1 and S2 respectively on any path (from

procedure entry to the corresponding program points). Clearly, q = 1 + max (q1, q2). Since

U 6⇒p g = 0, either U1 6⇒p g = 0 or U2 6⇒p g = 0. Consider the case when U1 6⇒p

g = 0. (The other case is symmetric.) Let S̃ be any subset of ℓ states of sample S.

Let I(S̃) = {i ‖ Si ∈ S̃}. For I ⊆ I(S̃), let EI be the event that Eval(g, S1
i ) = 0 iff

i ∈ I. The events EI form a disjoint partition of the event space. Let Fi be the event that

Eval(g, S1
i ) 6= Eval(g, S2

i ). Let ci = Eval(g,S2
i )

Eval(g,S2
i )−Eval(g,S1

i ) . Let S1,I = {S1
i ‖ i ∈ I}. Then,

Pr(S̃ |= g = 0 ‖ AS)

=
∑

I⊆I(S̃)

Pr(EI ‖ AS)× Pr(S̃ |= g = 0 ‖ EI ∧AS)

≤
∑

I⊆I(S̃)

Pr(S1,I |= g = 0 ‖ AS)× Pr(S̃ |= g = 0 ‖ EI ∧ AS)

=
∑

I⊆I(S̃)

Pr(S1,I |= g = 0 ‖ AS1)× Pr(
∧

i∈I(S̃)−I

Fi ∧ Rand() = ci ‖ EI ∧ AS)

≤
∑

I⊆I(S̃)

Pr(S1,I |= g = 0 ‖ AS1)×
∧

i∈I(S̃)−I

Pr(Rand() = ci ‖ Fi)

≤
∑

I⊆I(S̃)

(
q1 + 1
p

)|I|
×

(
1
p

)ℓ−|I|
(from induction hypothesis on S1)

=
ℓ∑

i=1

(
ℓ
i

) (
q1 + 1
p

)|I|
×

(
1
p

)ℓ−|I|

=
(
q1 + 2
p

)ℓ

=
(
q + 1
p

)ℓ
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Appendix B

Uninterpreted Functions

The actions of the interpreters for a non-deterministic assignment x :=? are same

as for an assignment x := x′, where x′ is some fresh variable (can be thought of as a

new input variable). Hence, the non-deterministic assignment can be regarded as a special

case of the deterministic assignment. Therefore, we omit the case of a non-deterministic

assignment node in all inductive proofs in this chapter. Note that this reduction does not

lead to any increase in any parameter on which the computation complexity of the algorithm

depends.

We first prove the completeness and soundness theorems stated in Section 3.2.

Both the random interpreter and the abstract interpreter perform a forward analysis in the

sense that the outputs of a flowchart node are determined by the inputs of that node. The

proofs are by induction on the number of flowchart nodes analyzed by the interpreters. For

the inductive case of the proof, we prove that the required property holds for the outputs

of a node given that it holds for the inputs of that node. For the scenario when at least one

of the inputs of a node is ⊥ (undefined), the proof is trivial. Hence, we prove the results

assuming that all inputs to any node are non-⊥.

B.1 Proof of Completeness (Theorem 8)

The proof is by induction on the number of flowchart nodes analyzed by the

interpreters. The base case is trivial since initially U = ∅. Since ∅ ⇒ e1 = e2, it must be

the case that e1 ≡ e2. Hence, ρ |= e1 = e2. For the inductive case, the following scenarios

arise.
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Assignment Node: See Figure 3.4 (a).

Consider the expressions e′
1 = e1[e/x] and e′

2 = e2[e/x]. Since U ⇒ e1 = e2, we have that

U ′ ⇒ e′
1 = e′

2. It follows from the induction hypothesis on U ′ and ρ̃′ that ρ̃′ |= e′
1 = e′

2.

Hence, ρ̃ |= e1 = e2.

Non-deterministic Conditional Node: See Figure 3.4 (c).

This case is trivial since U1 = U2 = U and ρ̃1 = ρ̃2 = ρ̃. By using the induction hypothesis

on ρ̃ and U , we get the desired result.

Join Node: See Figure 3.4 (d).

By definition of the abstract interpreter, U1 ⇒ e1 = e2 and U2 ⇒ e1 = e2. By induction

hypothesis on U1 and ρ̃1 and on U2 and ρ̃2, we have that ρ̃1 |= e1 = e2 and ρ̃2 |= e1 = e2.

It now follows from Lemma 8 that ρ̃ |= e1 = e2.

B.2 Proof of Soundness (Theorem 9)

The proof is by induction on the number of flowchart nodes analyzed by the

interpreters. We first prove the base case. Note that A(e1, ρ̃) = SEval(e1) and A(e2, ρ̃) =

SEval(e2) since ρ̃(x) = [x, . . . , x]T . Hence, SEval(e1) = SEval(e2). The result now follows

from Lemma 7. For the inductive case, the following scenarios arise.

Assignment Node: See Figure 3.4 (a).

Consider the expressions e′
1 = e1[e/x] and e′

2 = e2[e/x]. Note that ρ̃′ |= e′
1 = e′

2 since

ρ̃ |= e1 = e2. Also, Degree(A(e1, ρ̃)) = Degree(A(e′
1, ρ̃′)). Hence, ℓ ≥ Degree(A(e′

1, ρ̃′))

since ℓ ≥ Degree(A(e1, ρ̃)). It follows from the induction hypothesis on U ′ and ρ̃′ that

U ′ ⇒ e′
1 = e′

2. Thus, it follows that U ⇒ e1 = e2.

Non-deterministic Conditional Node: See Figure 3.4 (b).

This case is trivial since ρ̃1 = ρ̃2 = ρ̃ and U1 = U2 = U . The induction hypothesis on ρ̃

and U implies the desired result.

Join Node: See Figure 3.4 (c).

By definition of ρ̃, A(e1, ρ̃) = w×A(e1, ρ̃1)+(1−w)×A(e1, ρ̃2) and A(e2, ρ̃) = w×A(e2, ρ̃1)+

(1− w)× A(e2, ρ̃2), where w is a fresh variable that does not occur in A(e1, ρ̃1), A(e1, ρ̃2),
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A(e2, ρ̃1), or A(e2, ρ̃2). Since A(e1, ρ̃) = A(e2, ρ̃), it follows that A(e1, ρ̃1) = A(e2, ρ̃1) (by

substituting w = 0). Hence, ρ̃1 |= e1 = e2. Also, Degree(A(e1, ρ̃1)) = Degree(A(e1, ρ̃)) and

Degree(A(e2, ρ̃1)) = Degree(A(e2, ρ̃)). Thus, it follows from the induction hypothesis on U1

and ρ̃1 that U1 ⇒ e1 = e2. Similarly, we can prove that U2 ⇒ e1 = e2. It now follows from

the definition of the abstract interpreter that U ⇒ e1 = e2.

B.3 Proof of Lemma 9

We first introduce some useful notation. We say that a pair H = (V,E) has

property P if V ⊆ Vπ and E is a set of equivalences x = e, one for each variable x ∈ Vπ−V ,

such that Vars(e) ⊆ V . Furthermore, if x ∈ V , then x ≺ y for all variables y such that

(y = x) ∈ E.

For any pair H = (V,E) with property P, let ≺E denote a partial order on the

program variables such that y ≺E z iff E ⇒ z = F (e1, e2) and y ∈ Vars(F (e1, e2)), or

E ⇒ y = z such that y ≺ z.

For any equivalence e1 = e2, let De1=e2 denote the following set of equivalences.

DF (e′
1,e′

2)=F (e′′
1 ,e′′

2 ) = De′
1=e′′

1
∪De′

2=e′′
2

Dy=y = {}

Dy=e = {y = e}, where e 6≡ y

Note that De1=e2 contains only equivalences of the form y = e, where y is some variable

and e is some expression. Observe that

E ⇒ e1 = e2 iff E ⇒ De1=e2

(By E ⇒ De1=e2 , we mean that E ⇒ e = e′ for every equivalence (e = e′) in De1=e2.)

We now prove the lemma. The proof of the lemma is by induction on structure of

the program. The base case is trivial since the pair H = (Vπ, ∅) clearly has property P and

represents the set of Herbrand equivalences at procedure entry. For the inductive case, the

following scenarios arise.

Assignment Node: See Figure 3.4 (a).

Let H ′ = (V ′, E′) represent the set of Herbrand equivalences before the assignment node
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such that H ′ has property P. We define below a pair H = (V,E) that has property P and

that represents the set of Herbrand equivalences after the assignment node.

Et = E′[x′/x] ∪ {x = Sub(e,E′)[x′/x]}

V = {y | y ∈ Vπ,¬∃e′(Et ⇒ y = e′, e′ ≺ y, x′ 6∈ Vars(e′))}

E = {y = e′ | y ∈ Vπ − V, Et ⇒ y = e′, e′ ≺ y,Vars(e′) ⊆ V }

Here Sub(e,E′) refers to the expression obtained from e by replacing all occurrences of

variable y in e by e′ for all equivalences y = e′ in E′. Note that x′ represents a fresh

variable that does not occur in Vπ.

It is not difficult to see that H = (V,E) has property P. Clearly, Et represents

the set of Herbrand equivalences after the assignment node, since it is the strongest post-

condition of E with respect to the assignment x := e. Hence, it suffices to show that if

Et ⇒ e1 = e2 such that x′ 6∈ Vars(e1) and x′ 6∈ Vars(e2), then E ⇒ e1 = e2. Suppose

Et ⇒ e1 = e2. Then, Et ⇒ De1=e2. It now follows from Claim 1 stated and proved below

that E ⇒ De1=e2 . Hence, E ⇒ e1 = e2.

Claim 1 Suppose Et ⇒ y = e′ such that x′ 6∈ Vars(e′) and the variable y is different

from variable x′. Then E ⇒ y = e′.

Proof. Without loss of generality, we can assume that e′ ≺ y. The proof is by induction on

the ordering of variable y in the partial order ≺E. The base case corresponds to y being in

the set V , and hence e′ ≡ y. Clearly, E ⇒ y = y. We now consider the inductive case. Since

Et ⇒ y = e′, there exists an expression e′′ such that (y = e′′) ∈ E. Note that Et ⇒ y = e′′

and hence Et ⇒ e′ = e′′. Thus, Et ⇒ De′=e′′ . Note that for every (z = e′′′) ∈ De′=e′′ ,

z ≺E y; and hence, it follows from the inductive hypothesis that E ⇒ z = e′′′. Thus,

E ⇒ De′=e′′ , and hence E ⇒ e′ = e′′. Thus, E ⇒ y = e′. 2

Non-deterministic Conditional Node: See Figure 3.4 (c).

This case is trivial since the sets of Herbrand equivalences that are true on the two branches

are same as the set of Herbrand equivalences that are true before the conditional.

Join Node: See Figure 3.4 (d).

Let H1 = (V1, E1) and H2 = (V2, E2) represent the set of Herbrand equivalences before the
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join node such that both H1 and H2 have property P. We define below a pair H = (V,E)

that has property P and that represents the set of Herbrand equivalences after the join

node.

V = {y | y ∈ Vπ,¬∃e′(E1 ⇒ y = e′, E2 ⇒ y = e′, e′ ≺ y, )}

E = {y = e′ | y ∈ Vπ − V, E1 ⇒ y = e′, E2 ⇒ y = e′, e′ ≺ y,Vars(e′) ⊆ V }

It is not difficult to see that H = (V,E) has property P. It suffices to show that

if E1 ⇒ e1 = e2 and E2 ⇒ e1 = e2, then E ⇒ e1 = e2. Suppose E1 ⇒ e1 = e2 and

E2 ⇒ e1 = e2. Then, E1 ⇒ De1=e2 and E2 ⇒ De1=e2 . It now follows from Claim 2 stated

and proved below that E ⇒ De1=e2 . Hence, E ⇒ e1 = e2.

Claim 2 Suppose E1 ⇒ y = e′ and E2 ⇒ y = e′. Then E ⇒ y = e′.

Proof. Without loss of generality, we can assume that e′ ≺ y. The proof is by induction

on the ordering of variable y in the partial order ≺E1. The base case corresponds to y being

in the set V1, and hence e′ ≡ y. Clearly, E ⇒ y = y. We now consider the inductive case.

Since E1 ⇒ y = e′ and E2 ⇒ y = e′, there exists an expression e′′ such that (y = e′′) ∈ E.

Since E ⇒ y = e′′, we have that E1 ⇒ y = e′′ and E2 ⇒ y = e′′. Hence, E1 ⇒ e′ = e′′

and E2 ⇒ e′ = e′′. Thus, E1 ⇒ De′=e′′ and E2 ⇒ De′=e′′ . For every (z = e′′′) ∈ De′=e′′ ,

z �E1 y; and hence, it follows from the inductive hypothesis that E ⇒ (z = e′′′). Thus,

E ⇒ De′=e′′ , and hence E ⇒ e′ = e′′. Thus, E ⇒ y = e′. 2
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Appendix C

Inter-procedural Analysis

C.1 Definition and Properties of Fully Symbolic State

Phase 1

We hypothetically extend the random interpreter to also compute a symbolic state

ρ̃, paths T , and an integer d (also referred to as dS) at each program point besides a sample

S. Paths T represent the set of all paths analyzed by the random interpreter inside the

corresponding procedure. A path is simply a sequence of assignments. The symbolic state

ρ̃ gives for each variable x that polynomial whose different random instantiations are the

values of x in different states in the sample S. The integer d represents the maximum

degree of the weight variables (introduced at join nodes and procedure call nodes) in any

polynomial in the symbolic state ρ̃. d also represents the maximum number of join points

and procedure calls analyzed by the random interpreter along any path immediately after

computation of sample S. The values of ρ̃, T and d are updated for each flowchart node as

shown below.

Initialization: Following initialization is done at procedure entry points.

ρ̃(x) = SEval(x)

T = {ǫ}

d = 0

ǫ denotes the empty sequence of assignment nodes. At all other program points, the follow-

ing initialization is done: ρ̃ = ⊥, T = ∅, and d = −1.
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Assignment Node: See Figure 4.4 (a).

If ρ̃′ = ⊥, then ρ̃ = ⊥, T = ∅ and d = −1. Else,

ρ̃ = ρ̃′[x← (SEval(e))[ρ̃′]]

T = {τ ;x := e ‖ τ ∈ T ′}

d = d′

(SEval(e))[ρ̃′] refers to the polynomial obtained from SEval(e) by replacing all variables y

by ρ̃′(y).

Non-deterministic Assignment Node: See Figure 4.4 (b).

If ρ̃′ = ⊥, then ρ̃ = ⊥, T = ∅ and d = −1. Else,

ρ̃ = ρ̃′[x← x′], where x′ is a fresh variable

T = {τ ;x :=? ‖ τ ∈ T ′}

d = d′

Non-deterministic Conditional Node: See Figure 4.4 (c).

ρ̃1 = ρ̃2 = ρ̃

T 1 = T 2 = T

d1 = d2 = d

Join Node: See Figure 4.4 (d).

If ρ̃1 = ⊥, then ρ̃ = ρ̃2, T = T 2 and d = d2. Else if ρ̃2 = ⊥, then ρ̃ = ρ̃1, T = T 1 and

d = d1. Else,

ρ̃(x) = αρ̃1(x) + (1− α)ρ̃2(x), for all variables x

T = T 1 ∪ T 2

d = max(d1, d2) + 1

α is a fresh variable that does not occur in ρ̃1 and ρ̃2.
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Procedure Call: See Figure 4.4 (e).

If ρ̃′ = ⊥ or YP ′ = ⊥, then ρ̃ = ⊥, T = ∅ and d = −1. Else,

ρ̃(x) =

{
ỸP ′(x)[ρ̃′(y1)/y1, . . , ρ̃′(yk)/yk] if x ∈ OP ′

ρ̃′(x) otherwise
T = {τ1; τ2 ‖ τ1 ∈ T ′, τ2 ∈ Paths(YP ′)}

d = d′ + 1

where,

ỸP ′ =
t−1∑

j=1

αjYP ′,j + (1−
t−1∑

j=1

αj)YP ′,t

αj ’s are fresh variables that do not occur in ρ̃′ and YP ′,j. OP ′ is the set of output variables

of procedure P ′ and y1, . . . , yk are the input variables of procedure P ′. Paths(YP ) refers to

be the set of paths T after the exit node of procedure P during computation of the set of

runs YP for procedure P . Initially, YP is defined to be ⊥ and Paths(YP ) is defined to be

the empty set for all procedures P .

We say that a summary YP is sound and complete for a context C when YP |=C

e1 = e2 ⇐⇒ Holds(e1 = e2,Paths(YP ), C).

Lemma 16 Suppose that the summaries of all procedures plugged into analyzing a proce-

dure P are sound and complete for all contexts. Let ρ̃ be the fully-symbolic state and T be

the set of paths computed by the random interpreter at any program point inside procedure

P (in phase 1). Let C be any context for procedure P and e1 = e2 be some equivalence.

Then,

ρ̃ |=C e1 = e2 ⇐⇒ Holds(e1 = e2, T, C)

Proof. The proof of the lemma is by induction on the number of flowchart nodes analyzed

by the random interpreter. The base case follows easily from the soundness and complete-

ness properties (properties B1 and B2) of the SEval function. For the inductive case, the

proof is trivial if one of the inputs of a node is ⊥; hence we consider the scenarios when all

inputs to a node are non-⊥.

Assignment Node: See Figure 4.4 (a).

Let e′
1 = e1[e/x] and e′

2 = e2[e/x]. Note that e′
1 = e′

2 is the weakest precondition of e1 = e2
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immediately before the assignment node along paths in T . Hence,

Holds(e1 = e2, T, C) ⇐⇒ Holds(e′
1 = e′

2, T
′, C)

It follows from the induction hypothesis on ρ̃′ that

Holds(e′
1 = e′

2, T
′, C) ⇐⇒ ρ̃′ |=C e′

1 = e′
2

It now follows from property B3 of the SEval function that

ρ̃′ |=C e′
1 = e′

2 ⇐⇒ ρ̃ |=C e1 = e2

Non-deterministic Assignment Node: See Figure 4.4 (b).

Let x′ be the fresh variable assigned to x by the symbolic random interpreter in obtaining

state ρ̃ from ρ̃′. Let e′
1 = e1[x′/x] and e′

2 = e2[x′/x]. Note that e′
1 = e′

2 is the weakest

precondition of e1 = e2 along paths in T immediately before the assignment node. The rest

of the proof is now similar to the case of assignment node above.

Non-deterministic Conditional Node: See Figure 4.4(c).

This case is trivial since ρ̃1 = ρ̃ and ρ̃2 = ρ̃.

Join Node: See Figure 4.4(d).

Note that

Holds(e1 = e2, T, C) ⇐⇒ Holds(e1 = e2, T 1, C)

and Holds(e1 = e2, T 2, C)

It follows from the induction hypothesis on ρ̃1 and on ρ̃2 that

Holds(e1 = e2, T 1, C) ⇐⇒ ρ̃1 |=C e1 = e2

Holds(e1 = e2, T 2, C) ⇐⇒ ρ̃2 |=C e1 = e2

Since ρ̃′ = αρ̃1 + (1− α)ρ̃2, the following holds:

ρ̃′ |=C e1 = e2 ⇐⇒ ρ̃1 |=C e1 = e2 and ρ̃2 |=C e1 = e2
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Procedure Call: See Figure 4.4 (e).

Let ρ̃j be the following symbolic state:

ρ̃j(x) =

{
YP ′,j(x)[ρ̃′(y1)/y1, . . , ρ̃′(yk)/yk] if x ∈ OP ′

ρ̃′(x) otherwise

whereOP ′ is the set of output variables of procedure P ′ and y1, . . . , yk are the input variables

of procedure P ′. It follows from the induction hypothesis on ρ̃′ and the soundness and

completeness of the summary for procedure P ′ that

Holds(e1 = e2, T, C) ⇐⇒ ∀j ∈ {1, . . , t}, ρ̃j |=C e1 = e2

Since ρ̃′ =
t−1∑

j=1
αj ρ̃j + (1−

t−1∑

j=1
αj)ρ̃t, the following holds:

ρ̃ |=C e1 = e2 ⇐⇒ ∀j ∈ {1, . . , t}, ρ̃j |=C e1 = e2

2

Phase 2

We hypothetically extend the random interpreter to also compute a symbolic state

ρ̃, paths T , and an integer d (also referred to as dS) at each program point besides a sample

S, as is done in proving the correctness of phase 1. These are updated for different flowchart

nodes as in phase 1, except for the initialization of any procedure other than Main.

The entry point of any procedure P other than Main is initialized as follows. Let

there be m call sites for procedure P that have a non-⊥ sample. Let T i, di, ρ̃i be the values

computed by the random interpreter at the ith such call site. Then, the random interpreter

performs the following initialization for the entry point of procedure P .

T = T 1 ∪ . . ∪ Tm

ρ̃ =
m−1∑

i=1

αiρ̃i + (1−
m−1∑

i=1

αi)ρ̃m

d = max(d1, . . , dm) + 1

Here α1, . . . , αm−1 are fresh variables.

We use the notation Holds2(e1 = e2, T ) to denote that the equivalence e1 = e2

holds at the end of all paths in T . We also use the notation ρ |= e1 = e2 to denote that

Eval(e1, ρ) = Eval(e2, ρ) for any state ρ.
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Lemma 17 Suppose that the summaries of all procedures plugged into analyzing a proce-

dure P are sound and complete for all contexts. Let ρ̃ be the fully-symbolic state and T be

the set of paths computed by the random interpreter at any program point inside procedure

P (in phase 2). Let e1 = e2 be any equivalence. Then,

ρ̃ |= e1 = e2 ⇐⇒ Holds2(e1 = e2, T )

Proof. The proof is by induction on the number of flowchart nodes analyzed by the random

interpreter. The base case follows easily from the soundness and completeness of the SEval

function. For the inductive case, the proofs for assignment node (both deterministic and

non-deterministic), non-deterministic conditional node, join node, and procedure call are

similar to the ones for phase 1. We now prove the inductive case for the entry point of a

procedure P . Let π1, . . , πm be the program points immediately before the calls to procedure

P that have a non-⊥ sample. Let ρ̃i, T i, di be the values computed by the random interpreter

at those points. The following holds:

Holds2(e1 = e2, T ) ⇐⇒ ∀i ∈ {1, . . ,m},Holds2(e1 = e2, T i)

It follows from the induction hypothesis on ρ̃i that

Holds2(e1 = e2, T i) ⇐⇒ ρ̃i |= e1 = e2

Since ρ̃ =
m−1∑

i=1
αiρ̃i + (1−

m−1∑

j=1
)αmρ̃m, the following holds:

ρ̃ |= e1 = e2 ⇐⇒ ∀i ∈ {1, . . ,m} ρ̃i |= e1 = e2

2

C.2 Equivalent program without any procedure calls

In this section, we show how to convert each procedure in a program (in our

program model) into an equivalent procedure (in the sense that both procedures satisfy the

same set of equivalences at corresponding program points) that does not use any procedure

calls. It follows from Theorem 15 and Theorem 16 that any program node is processed at

most H1 times in phase 1 and H2 times in phase 2 during fixed-point computation. We

use this observation to transform the given program (with procedure calls) in the following

manner:
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1. In the original program, unroll all loops inside procedures and in the call graph along

the paths taken by any standard summary based inter-procedural analyzer in phase

1. It follows from Theorem 15 that this unrolling leads to an H1 times increase in the

size of the procedures.

2. In the acyclic call graph with acyclic procedures obtained in step 1, replace all proce-

dure calls by recursive procedure inlining in a bottom-up manner.

The procedures thus obtained have at most mm nodes, where m is the size of the program

obtained in step 1 (measured in terms of the number of nodes). Thus, the size of each

procedure is bounded above by (nH1)nH1 nodes.

Next, observe that there exists a generalized context (which is an acyclic program

fragment) for each procedure P in the sense that whatever equivalences hold among the

input variables of P in all calls to P , the same set of equivalences hold among those variables

at the end of the generalized context. The generalized context can be obtained as follows:

3. In the original program, unroll all loops in the call graph and inside procedures along

the paths taken by any standard summary based inter-procedural analyzer in phase

2. It follows from Theorem 16 that this unrolling increases the size of the procedures

by a factor of at most H2.

4. In the acyclic call graph with acyclic procedures thus obtained in step 3, build a

context (in a bottom-up manner) for a procedure P , which has q call sites inside

procedures P1, . . . , Pq, as follows. Construct a non-deterministic conditional with q

branches, whose ith branch is the context of procedure Pi followed by the code of Pi

that leads up to the corresponding call to procedure P .

The contexts thus obtained have a worst-case size of mm, where m is the size of the program

obtained in step 3. This leads to a total size of (nH2)nH2 for each context.

We can now obtain the desired program without any procedure calls as follows:

5. In the original program, prepend all procedures by their generalized contexts obtained

in step 4. This leads to a total size of at most 2(nH2)nH2 nodes for each procedure.

6. In the program obtained in step 5, replace all procedure calls by their summaries

obtained in step 2. This leads to a total size of at most nmax = 2(nH1)nH1(nH2)nH2

nodes for each procedure.
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C.3 Proof of Lemma 13

Let S be any sample and ρ̃ be the corresponding fully-symbolic state of k variables

computed by the random interpreter at some program point. For any state ρ of k variables,

let J(ρ) denote the vector (ρ(x1), . . . , ρ(xk), 1). Let A be the set of elements of the vectors

in the set {J(ρ̃′)[vi/wi] ‖ vi ∈ Fp}, where J(ρ̃′)[vi/wi] denotes the vector obtained from

J(ρ̃′) by replacing all weight variables wi by some choices of elements vi from Fp. Let F′
p

be the smallest field generated by the elements in set A. Let U(ρ̃′) be the vector space

generated by the vectors {J(ρ̃′)[vi/wi] | vi ∈ Fp} over the field F′
p. Let m be the rank of this

vector space. Note that m ≤ 1 + k (since there can be at most 1 + k linearly independent

vectors over F′
p, where each vector consists of 1 + k elements from F′

p).

Let E be the event that the vectors J(S′
1), . . . , J(S′

t) have less than m linearly

independent vectors over the field F′
p. We partition the event E into disjoint cases depending

on which of the vectors J(S′
1), . . . , J(S′

t) are linearly independent. Let I be any subset of

{1, . . , t}. Let Fi be the event that J(S′
i) is linearly independent of J(S′

1), . . . , J(S′
i−1). Let

EI be the event
∧

i∈I
Fi ∧

∧

i∈{1,...,t}−I
¬Fi. The set of events {EI | I ⊆ {1, . . , t}, 1 ∈ I, |I| < m}

is a disjoint partition of the probability space for event E . Thus,

Pr(E) =
∑

I⊆{1,..,t},1∈I,|I|<m

Pr(EI)

Pr(EI) = Pr(
∧

i∈I

Fi ∧
∧

i∈{1,..,t}−I

¬Fi)

=
∏

i∈I

Pr(Fi |
∧

j∈I,j<i

Fj ∧
∧

j∈{1,..,t}−I,j<i

¬Fj ]

×
∏

i∈{1,..,t}−I

Pr(¬Fi |
∧

j∈I,j<i

Fj ∧
∧

j∈{1,..,t}−I,j<i

¬Fj)

≤
∏

i∈{1,..,t}−I

Pr(¬Fi |
∧

j∈I,j<i

Fj ∧
∧

j∈{1,..,t}−I,j<i

¬Fj)

We now bound Pr(¬Fi |
∧

j∈I,j<i
Fj ∧

∧

j∈{1,..,t}−I,j<i
¬Fj) for any i ∈ {1, . . , t} − I.

Let Ii be the set {j ∈ I | j < i} and let ni = |Ii|. Let Mi be the matrix with ni + 1 rows

from the set {J(S′
j) ‖ j ∈ Ii ∪ {i}}. Let M̃i be the matrix with ni + 1 rows obtained from

Mi by replacing the row J(S′
i) with J(ρ̃′). Since the events {Fj}j∈Ii occur, the vectors

{J(S′
j)}j∈Ii are linearly independent. Note that J(ρ̃′) is linearly independent of the vectors
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{J(S′
j)}j∈Ii (because otherwise Rank (U(ρ̃′)) would be ni, which is less than m). Hence,

Rank (M̃i) = ni + 1. Thus, there exists a submatrix M̃ s
i of M̃i of size (ni + 1) × (ni + 1)

such that Rank (M̃ s
i ) = ni + 1, or equivalently, Det(M̃ s

1 ) 6≡ 0. Let M s
i be the submatrix

of Mi consisting of those columns of Mi that are used in obtaining M̃ s
i from M̃i. Note

that S′
i is a random instantiation of ρ̃′, and hence Det(M s

i ) is a random instantiation 1 of

Det(M̃ s
i ), which is identically not equal to 0. Hence, it follows from the classic theorem

on checking polynomial identities [Sch80, Zip79] that Pr(Det(M s
i ) = 0) ≤ D

p , where D is

the degree of polynomial Det(M̃ s
i ) (in the variables whose random instantiation is used to

obtain S′
i from ρ̃′). Note that D ≤ dS . Since J(S′

i) is linearly dependent on {J(S′
j)}j∈Ii

only if Det(M s
1 ) = 0, we have:

Pr(¬Fi |
∧

j∈I,j<i

Fj ∧
∧

j∈{1,..,t}−I,j<i

¬Fj) ≤
dS

p

Thus,

Pr(EI) ≤
∏

i∈{1,..,t}−I

Pr(¬Fi |
∧

j∈I,j<i

Fj ∧
∧

j∈{1,..,t}−I,j<i

¬Fj)

≤
∏

i∈{1,..,t}−I

dS

p
=

(
dS

p

)t−|I|

Pr(E) =
∑

I⊆{1,..,t},1∈I,|I|<m

Pr(EI)

≤
∑

I⊆{1,..,t},1∈I,|I|<m

(
dS

p

)t−|I|

≤
m−1∑

i=1

(
t− 1
i− 1

) (
dS

p

)t−i

≤
m−1∑

i=1

(
3(t− 1)
t− i

)t−i
×

(
dS

p

)t−i

≤
m−1∑

i=1

(
3t

t− (m− 1)
×
dS

p

)t−i

≤
αt−kv

1− α
, where α =

3dSt
p(t− kv)

1This makes use of the assumption that SEval function does not involve any random variables because
otherwise the choice of the random variables in S′

i is already decided by the choices that occur in other states
S′

j and hence in Det(M̃s
i ).



APPENDIX C. INTER-PROCEDURAL ANALYSIS 148

We now show that γ′
1(S) ≤ Pr(E). Suppose that event E does not occur. Consider

some equivalence e1 = e2 that is not entailed by ρ̃ in some context C. We show that S

also does not entail the equivalence e1 = e2 in context C. Let e = SEval(e1) − SEval(e2).

Since ρ̃ does not entail e1 = e2 in context C, there exists some concrete state ρ belonging

to the vector space U(ρ̃) such that ρ does not entail e1 = e2 in context C, or equivalently,

e[ρ][C] 6= 0. Since event E does not occur, there exist α1, . . . , αt ∈ F′
p such that J(ρ) =

t∑

i=1
αiJ(Si). Since

t∑

i=1
αi = 1, we have e[ρ][C] =

t∑

i=1
(αie[Si])[C] =

t∑

i=1
αi[C](e[Si][C]). This

implies that there exists 1 ≤ i ≤ t such that e[Si][C] 6= 0. Thus, Si (and hence S) does not

entail the equivalence e1 = e2 in context C. This completes the proof.

C.4 Proof of Lemma 14

We first define the notion of a basic set of contexts.

Definition 2 [Basic Set of Contexts] A set of contexts B for a procedure P is said

to be basic when for all contexts C and all equivalences e1 = e2 (such that the variables

that occur in e1 and e2 have mappings in C), if Eval(e1, C) 6= Eval(e2, C) then there exists

a context C ′ ∈ B such that Eval(e1, C ′) 6= Eval(e2, C ′) and C ′ ⇒ C. We denote such a

context C ′ by BasicB(C, e1 = e2).

A basic set of contexts has the following property.

Property 5 Let B be a basic set of contexts for a procedure P . Suppose that a summary

YP for a procedure P is sound for all contexts in B. Then YP is sound for all contexts for

procedure P .

Proof. Let C be any context and e1 = e2 be any equivalence such that

¬(Holds(e1 = e2,Paths(YP ), C))

This implies that there exists a path τ ∈ Paths(YP ) such that

Eval(eτ
1 , C) 6= Eval(eτ

2 , C)

where eτ
i = ei[gm/xm]..[g1/x1], and τ is the sequence of assignments x1 = g1; . . . ;xm = gm.

Let Cτ be BasicB(C, eτ
1 = eτ

2). By definition of Cτ , we have

Eval(eτ
1 , Cτ ) 6= Eval(eτ

2 , Cτ )
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and hence

¬(Holds(e1 = e2,Paths(YP ), Cτ ))

It now follows from the soundness of YP for context Cτ that

¬(YP |=Cτ e1 = e2)

Since Cτ ⇒ C, we conclude that

¬(YP |=C e1 = e2)

2

Observe that the following set is a basic set of contexts for any procedure P .

B = {{y1 = v1, . . , yk = vk} ‖ yi ∈ IP , ci ∈ Fp} where vi ≡ SEval(yi)[ci/yi]

IP denotes the set of input variables of procedure P . Note that |B| = pki. Hence, N ≤ pki .


